

 بسم ا الرحمن الرحيم

~(وننمؤْالمو ُولهسرو ُلَكممع ى اللَّهريلُوا فَسمقُلِ اعو)~





 

  


            


 

  

 






Content :

v Introduction to Java Programming Language .
- Programming Language and history of Java
- What you need to start working with Java
- What programming requirements
- Characteristics of Java
- Typical Java Development Environment
- Types of java

v Introduction to Java Applications .

- General Structure of the Java application
- Compiling and executing a Java application
- Displaying text with print , println and printf
- Special escape
- Data types and variables .
- Casting and promotion
- Reading data from user (Scanner)
- Increment and Decrement Operators
- Using Input Dialog and Output Dialog boxes
- Operation in java .

v Control Structures .
- Selection structures (If, If/else, switch ...)
- Nested Control Statements
- Repetition Structures (for, while, do...while …..)
- Nested for Statements
- Break and continue Statement

v Classes and Objects

- Classes, Objects, Methods .
- Declaring a Method with a Parameter
- Constructors
- Initializing Objects with Constructors
- Predefined and user-defined methods
- Declaring Methods with Multiple Parameters
- Scope of Declarations
- Method overloading
- Math Class .
- Random Number Generation
- Referring to the Current Objects Members with this Reference
- Final Instance Variables
- This class .

v Arrays
- Declaring and Creating Arrays
- Multidimensional Arrays
- Sorting Array.

v Object Oriented Programming: Inheritance .

- Super classes and Subclasses
- Relationship between Super classes and Subclasses
- Inheritance

v Strings

- Declaration Strings
- Strings methods

v Exception Handling .

- Exception-Handling Overview
- Types of exceptions
- Java Exception Hierarchy
- finally block

v Java Applet

- Introduction in java applet
- Applet methods
- Color Class
- Examples in applet

Introduction to Java Programming Language

ý What is programming ?

Programming means : a set of commands and instructions given to a
computer in the form of a program written in a particular programming
language by a word processor program source consists of several lines and
each line is considered among computer and deal with each sentence in a
particular order to accomplish the program which is designed to achieve ,
Java is one of the programming languages you create an application .

ý What programming requirements ?

o Interpreter Interpreter :

Some programming languages require an interpreter to interprets each line of
the program and tell the computer tasks to be do, and this language by
language and characterized such as Basic languages that need explaining
easily tested but flawed because they are slow when run .

o Compiler Compiler :

Requires others of programming languages interpreter translates the program
and converted into a form understood by the computer and Programs are
translated quickly run but flawed need more time to test where he writes
software then translates and then try In case of errors must be corrected first
and then re-translated and then tested to verify the demise error and unique
Java language requires a translator and interpreter .

ý History of java :

Java fabricated with James Gosling, Patrick Naughton, Chris Warth, Ed
Frank, And Mike Sherid . They founded the sun microsystem and had its
beginnings in 1991 fired on the language in a timely manner Oak name and
after the development took 18 months to launch its first Version in 1992 and
renamed in 1995 to Java .

Over time several version of Java were released which enhanced the
language and its libraries. The current version of Java is Java 1.6 also known
as Java 6.0.

ý Overview :

Java programming language consists of a Java compiler, the Java virtual
machine, and the Java class libraries. The Java virtual machine (JVM) is a
software implementation of a computer that executes programs like a real
machine. The Java compiler translates Java coding into so-called byte-code.

 The Java virtual machine interprets this byte-code and runs the program. The
Java virtual machine is written specifically for a specific operating system. The
Java runtime environment (JRE) consists of the JVM and the Java class
libraries.

ý Types Of programming Languages :
1. Machine language.
2. Assembly language .
3. High level language.

ý Characteristics of Java :

The target of Java is to write a program once and then run this program on
multiple operating systems.

- Platform independent: Java programs use the Java virtual machine as
abstraction and do not access the operating system directly. This makes
Java programs highly portable. A Java program which is standard
complaint and follows certain rules can run unmodified all several
platforms, e.g. Windows or Linux.

- Object-orientated programming language: Except the primitive data
types, all elements in Java are objects.

- Secure: java code convert to byte code during compilation , and it does
not work with low level programming (assembly language) which is the
common language for writing viruses .

- Portable: Java programs run on more than one operating system at the
same time .

- Error handling :Possibility to resume execution even if grammatical
error occurred (syntax error) in the middle of the program.

- Interpreted and compiled language: Java source code is transferred
into byte-code which does not depend on the target platform. This byte-
code will be interpreted by the Java Virtual machine (JVM). The JVM
contains a so called Hotspot-Compiler which translates critical byte-code
into native code.

The Java syntax is similar to C++. Java is case sensitive, e.g. the variables
my Value and my value will be treated as different variables.

ý Development with Java:

The programmer writes Java source code in a text editor which supports plain
text. Normally, We use Textpad ,Eclipse , Netbeans editors …

You do not need any other development tool, such as an Integrated
Development Environment (IDE). We strongly recommend that you not use
anything but a basic text editor until you complete this book . An IDE can
protect you from some of the details that really matter, so you're much better
off learning from the command-line or textpad Editor and then, once you
really understand what's happening, move to a tool that automates some of
the process …

At some point the programmer calls the Java compiler (javac). The Java
compiler creates platform independent code which is called byte-code. This
byte-code is stored in ".class" files.

Byte-code can be executed by the Java runtime environment. The Java
runtime environment (JRE) is a program which knows how to run the byte-
code on the operating system. The JRE translates the byte-code into native
code and executes it, e.g. the native code for Linux is different then the native
code for Windows.

By default, the compiler puts each class file in the same directory as its
source file.

ý Types of java:

- Java Standard Edition (Java SE) : use to designs Desktop application.
- Java Enterprise Edition (Java EE) : applications and web

applicationsJVM,
- Java Micro Edition (Java ME) : geared toward applications for small,

memory constrained devices

Introduction to Java Applications

Note that : In this Course , I will Discussing Standard Edition of java !

ý Phases for execute java program :

1) Write a java source code and store it by "NAME.java".
2) Simple Run java program: the compiler create the byte code and

store them in a file with extension ".class".
3) Loading the program in the memory.
4) Byte code verification.
5) Execution by JVM.

ý Program style in java :

- application : program that execute from the user "Local Computer"
è there are main method , the basic unit to write a java program is

Class
- applet : for designing graphics …
è there are no main method

ý Two types of classes :

- API (application programming Interfaces) :group package
è collection of pre-defined class

- User defined class.
è a classes that user can be declaration such as a variables and

methods .

ý packages two types :

- Core : java.util ,…
- external : javax.swing , …

ý General Structure of the Java application:

è The General Syntax in java application

public class CLASSNAME
{

public static void main (String [] arg)
{

} // end main method

} // end of public class

Notes:
à The name of the program must be the same name as the public
class
àThe program must contain a public class and only one
àThe JVM to start the implementation of the program of the main
method and anything outside the main method will be implemented
only if summoned

ý Displaying text with print , println and printf

- System.out.print(……);
- System.out.println(……);
- System.out.printf(……);

o System.out.print(……);
print in line , when you end printing the line , the curser still in the same line

Ex:
System.out.print("Welcome to my first program ! ");
outputà Welcome to my first program !

Ex:
System.out.print("10"+10);
outputà 1010

o System.out.println(……);
print in line but , when you end printing the line , the curser go to the next line.

Ex:
System.out.println("Welcome to my first program ! ");
outputà Welcome to my first program !

 But, the cursor go to next line !!!

Ex:
System.out.println("Hello ");
System.out.println("you aare in java lesson");
outputà Hello
 you aare in java lesson

o System.out.printf("FORMAT STRING","String to print");

this type put an format to print anything you want …

• %s àStrings .
• %S àStrings , but convert all letters to capital letters .
• %d àintegers
• %f à float
• %B à Boolean

Ex:
System.out.printf ("%S ","Welcome to my first program! ");
outputà WELCOME TO MY FIRST PROGRAM !

Ex:
System.out.printf ("%f ", 2.0);
outputà2.000000

Ex:
System.out.printf ("%d add %d= %d ",10 , 20 , (10+20));
outputà10 add 20 = 30

Ex:
System.out.printf ("%s " , "java" ,"application");
outputà java

every specifire has only
one block to print it .

ý Special escape:

Java language supports few special escape sequences for String and char
literals as well. They are:

Ex:
System.out.print("Welcome \n to java");

outputàWelcome
 to java

Ex:

System.out.print("Ehab \t Qadoumi");
outputà Ehab Qadoumi

Ex:
System.out.print("special escape in \" Java \" ");

 outputàspecial escape in " Java "

Ex:
System.out.print("aaaa\rbb");

 outputà bbaa

Ex:

System.out.print("aaaa\bbb");
 outputà aaab

ý Memory Concept :
- Local Variables
- Field Variables

ý Rules for naming variables:
- that starts with the letter A-Z, a-z and could start signal, $ _
- That does not start with a number.
- does not contain a blank space
- Do not be reserved names public, static. main, int, String ..
- Would be preferable to have a name, expressing what the object is

doing Sum express collection Shi and so... .

ý Variables

Variables are nothing but reserved memory locations to store values. This
means that when you create a variable you reserve some space in memory.

Based on the data type of a variable, the operating system allocates memory
and decides what can be stored in the reserved memory. Therefore, by
assigning different data types to variables, you can store integers, decimals,
or characters in these variables.

ý There are two data types available in Java:

1. Primitive Data Types
2. Reference/Object Data Types

o Primitive Data Types:

There are eight primitive data types supported by Java. Primitive data types
are predefined by the language and named by a key word. Let us now look
into detail about the eight primitive data types. (int , double , float , short ,long
, char , Boolean , byte) .

o Reference Data Types:

Reference variables are created using defined constructors of the
classes. They are used to access objects. These variables are
declared to be of a specific type that cannot be changed and the
Default value of any reference variable is null.

In Java, all variables must be declared before they can be used. The basic
form of a variable declaration is shown here:

Type identifier [= value][, identifier [= value] ...] ;

Examples :
int x ;
double y ;
int a,b,c ;
int a1=10 , a2 = 15 ;

ý Java Types and Type Conversion (Casting)

Type conversion is the process of converting the data type of a variable for
the duration of a specific operation. The standard form for a narrowing
conversion is called a cast; it may risk your data , sometimes loss of precision

Ex:
int x ;
double y= 3.0;
x = y ; // Error : possible loss of precision

ý There are more than way to conversion from type to another :

o Implicit casting :
There are times when a cast is performed implicitly by the compiler.

Ex:
if (3 > 'a')
{
...
}

In this case, the value of 'a' is converted to an integer value (the ASCII value
of the letter a) before it is compared with the number 3.

o Explicit conversion

è Syntax for a widening cast is simple:

NameOfOldValue = (new type) NameOfNewValue ;

àThis arrangement by numbering data type from smallest to largest :

Byte à short à int à long à float à double

Ex :
Int a = 5 ;
Long b = a ; // I need convert int to double à that’s Ok …

Ex :
Long b = 5 ;
Int a = b ; // I need convert long to int à need casting
 à int a = (int) b ;

If you go near arrows to
then you do not need to
convert , and his process
called " Promotion"
 Either if you go in the
opposite, you need to
convert "Casting "

Ex :
float c = 2.2 ; // an floating point number store in java as double
 // to convert there are two ways :
 à float c = (float)2.2 ;
 à float c = 2.2f ;

Ex :
double a = 11.2 ;
int x ;
x = a ; // I need store double in integer à need casting
 àx = (int) a ;

Note that : decimals are rounded by default Be sure you thoroughly
understand the syntax for the types you want to cast; this process can get
messy and loss of precision .

àThis arrangement by lettering data type :

char à int à long

In this case, the value of letter is converted to an integer value (the ASCII
value of the letter) before it is compared with the number .

Ex:
char a = 'A'; //that Ok …

Ex:
char a = 65; //convert by ASCII to char
 à a=A

Ex:
int l= 5 ;
char c = l ; //convert int to char à need casting
 àchar c = (char) l;

ý Input from User :
A Scanner object can parse user input entered on the console or from a file. A
Scanner breaks its input into separate tokens (which are typically separated
by white space), and then returns them one at time.

import java.util.Scanner ;

public class CLASSNAME
{

public static void main (String [] arg)
{

Scanner input = new Scanner (System.in);
VariableName = input .XXXX();

} // end main method

} // end of public class

The Scanner provides methods to convert the tokens into values of different
types.

- nextInt() ;àreads and converts next token to a integer value
- nextDouble();àreads and converts next token to a double value
- next() ;àreads next token and returns it as a String
- nextLine();àreads until the next new line and returns a String
- nextBoolean() ; à reads and converts next token to a Boolean value

Example :Write a program to inset 2 numbers from user and print there sum
import java.util.Scanner ;
public class TEST
{

public static void main (String [] arg)
{
 Scanner input = new Scanner (System.in);
 int num1 , num2 ;
 System.out.print("Plz. Enter the first Integer Number à ");
 num1 = input.nextInt();

 System.out.print("Plz. Enter the Second Integer Number à ");
 num2 = input.nextInt();

 System.out.printf("the Sum of two numbers is %d \n " , (num1+num2));
}

}

Whenever using
scanners, be sure to
include the proper import
line:
Import java.util.Scanner;
We will create scanners
:Scanner input = new
Scanner(System.in);

System.in is : an
InputStream which is
typically connected
to keyboard input of
console programs.

ý operations in java :

Java provides a rich set of operators to manipulate variables. We can divide
all the Java operators into the following groups:

- Arithmetic Operators
- Relational Operators
- Bitwise Operators
- Logical Operators
- Assignment Operators
- Misc Operators

o The Arithmetic Operators:
Arithmetic operators are used in mathematical expressions in the same way
that they are used in algebra. The following table lists the arithmetic
operators:

Priorities of Arithmetic operations :
1. What's inside the parentheses ()
2. exponent
3. regular multiplication and division in the same priority *, / and%
4. addition and subtraction with the same priority + and -
5. In the case of equal priorities Start from left to right

o The Relational Operators:

There are following relational operators supported by Java languageAssume
variable A holds 10 and variable B holds 20 then:

 Equality :
o equal to ==
o notequalto !=

 Relationl :

o great than >
o less than <
o great than or equal >=

less than or equal <=

o The Bitwise Operators:

Java defines several bitwise operators which can be applied to the integer
types, long, int, short, char, and byte.

è assume that a = 0011 1100 and b = 0000 1101

o The Logical Operators:

The following table lists the logical operators:

Assume Boolean variables A holds true and variable B holds false then:

o The Assignment Operators:

o Misc Operators :

There are few other operators supported by Java Language.

§ Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This
operator consists of three operands and is used to evaluate boolean
expressions. The goal of the operator is to decide which value
should be assigned to the variable. The operator is written as :

è Syntax :

Variable x = (expression)? Value if true: value if false

ý Increment and Decrement Operator :
The ++ and the-- are java’s increment and decrement operators, the
increment operator increases its operand by one. The decrement operator
decreases its operand by one. For example, this statement:

x = x + 1;

can be rewritten like this by use for the increment operator:

x++; // done process then increasing the value

Similarly, this statement:

x = x –1;

is equivalent to

 x--; // done process then decreasing the value

Example :
int x = 3 ;
System.out.println("x = "+ x); //3
x++ ; //4
System.out.println("x = "+ x); //x=4
System.out.println("x = "+ +x); //x =5
System.out.println("x = "+ x); //x =5
System.out.println("x = "+ x--); //x =5 and decrement x to be 4
System.out.println("x = "+ x++); //x =4 and increment x to be 5
System.out.println("x = "+ --x); //x = 4

ý Input and Output Dialog boxes

In non-swing application we were using System.in class for input or output
some text or numeric values but now in the swing application we can
use JOptionPane to show the output or show the message. This way of
inputting or outputting works very efficiently in the Swing Applications. The
window for showing message for input or output makes your application very
innovative.

JOptionPane class is available in the javax.swing.*; package. This class
provide various types of dialog box as follows:

1. A simple message dialog box which has only one button i.e. "Ok".
This type of message dialog box is used only for showing the
appropriate message and user can finish the message dialog box by
clicking the "Ok" button.

2. A message dialog box which has two or three buttons. You can set
several values for viewing several message dialog box as follows:
1.) "Yes" and "No"
2.) "Yes", "No" and "Cancel"
3.) "Ok", and "Cancel"

3. A input dialog box which contains two buttons "Ok" and "Cancel".

The JOptionPane class has three methods as follows:

- showMessageDialog(): First is the showMessageDialog() method
which is used to display a simple message.

- showInputDialog(): Second is the showInputDialog() method which
is used to display a prompt for inputting. This method returns a String
value which is entered by you.

- showConfirmDialog(): the last or third method is
the showConfirmDialog() which asks the user for confirmation
(Yes/No) by displaying message.

o showMessageDialog():

This method is used to show a message dialog box which contains some text
messages. This is being used with two arguments in the program where the
first argument is the parent object in which the dialog box opens and another
is the message which has to be shown.

JOptionPane.showMessageDialog(null,"String");

o showInputDialog():

This method is used to show a input dialog box which contains some text
messages and text area to input the text in her. This is being used with one
argument in the program where you enter the value you want in her and store
in variable .

String Var.Name = JOptionPane.showInputDialog("String");

o showConfirmDialog():

And the last or third method is the showConfirmDialog() which asks the user
for confirmation (Yes /No) by displaying message. This method return a
numeric value either 0 or 1, If you click on the "Yes" button then the method
returns 1 otherwise 0.

int Var.Name = JOptionPane.showConfirmDialog(null,"String");

it's a screen to display
the results only, you do
not need to variable to
store the return value .

it's a data entry screen, you
need to put a variable to store
the entered value.

Variable must be of type String
where this method return String

It's a screen asks the user for
confirmation , return 1 if click
yes or 0 if no … so you will put
it in an integer variable .

Example : I need to Enter my name and show in MessageBox

import javax.swing.JOptionPane ;
public class MESSAGE
{

public static void main(String [] arg)
{
String Name = JOptionPane.showInputDialog("Enter your name :");

 JOptionPane.showMessageDialog(null,"your name :" + Name);
}

}

We said earlier that showInputDialog method return an String value !

If you want to enter numbers and perform calculations ?

è there are many methods to parsing from String to numbers

ý Parsing method :
- Integer.parseInt()
- Double.parseDouble()
- Float.parseFloat()

è Syntax Parsing :

DataType Var.Name = XXX.parseXXX(var_you_need_parsing);

Example : write a program in java that will inert the name of student and the
first , mid and final Exam , then calculation Total of marks .

Note : use input and output Dialog Boxes !

import javax.swing.* ;
public class Example
{

public static void main (String [] arg)
{

 String Name , F_mark , M_mark , Final_mark ;

Name = JOptionPane.showInputDialog("Enter your name :");
F_mark = JOptionPane.showInputDialog("Enter the first mark :");
M_mark = JOptionPane.showInputDialog("Enter Mid mark :");
Final_mark = JOptionPane.showInputDialog("Enter final mark :");

double x , y , z ;
x = Double.parseDouble(F_mark);
y = Double.parseDouble(M_mark);
z = Double.parseDouble(Final_mark);

JOptionPane.showMessageDialog(null , "your name : " + Name + " \n

your mark : " + (x+y+z));

}

}

Control Structures

Control statements are used in programming languages to cause the flow of
control to advance and branch based on changes to the state of a program.

In Java, control statements can be divided under the following three
categories:

- Sequence.
- Selection.
- Looping.

ý Selection Statement :
Selection statements are used in a program to choose different paths of
execution based upon the outcome of an expression or the state of a variable.

- if single-selection statement
- if –else double selection statement
- nested if- else statement

o if single-selection statement :
The if statement executes a block of code only if the specified expression is
true. If the value is false, then the if block is skipped and execution continues
with the rest of the program. You can either have a single statement or a
block of code within an if statement. Note that the conditional expression must
be a Boolean expression.

àif statement has the following syntax:

if (conditional expression)
Statementaction;

Example :
public class IfStatementDemo
{
 public static void main(String[]args)
 {
 int a = 10, b = 20;
 if (a > b)
 System.out.println("a > b");
 if (a < b)
 System.out.println("b > a");
 }
}

Outputàb > a

o if –else double selection statement :
The if/else statement is an extension of the if statement. If the statements in
the if statement fails, the statements in the else block are executed. You can
either have a single statement or a block of code within if-else blocks. Note
that the conditional expression must be a Boolean expression.

àIf-else statement has the following syntax:

if (conditional expression)
 statement action ;
else
 statement action ;

Example:

public class IfElseStatementDemo {

 public static void main(String[] args) {
 int a = 10, b = 20;
 if (a > b) {
 System.out.println("a > b");
 } else {
 System.out.println("b > a");
 }}}

Outputà b > a

Example: write a program that enter a number and check if even or odd.

import java.util.Scanner;
public class NUMBER {
 public static void main(String args[]) {
 Scanner inp=new Scanner (System.in);
 String s;
 int y;
 System.out.print("plz enter number");
 y=inp.nextInt();
 System.out.println();

 if(y%2==0)
 System.out.println("the number is even number");
 else
 System.out.println("the number is odd number");
 }}

o nested if- else statement :
Based on the same principle accepted by the sentence, but there is one
difference that there is here more than the condition . In the absence of the
first condition is met, it will move to the second condition to achieve the
condition come out of the sentence .

àNested if-else statement syntax:

if (conditional expression 1)
 statement action 1 ;
else if (conditional expression 2)
 statement action 2;

 :
else if (conditional expression n)
 statement action n ;

Example :
public class NestedIfElseStatementDemo
{
 public static void main(String[] args)
 {
 int a = 10, b = 10;
 if (a > b)
 System.out.println("a > b");
 else if (b>a)
 System.out.println("b > a");
 else
 System.out.println("Equal");

 }
}

Outputà Equal

Example :
public class NestedIfElseStatementDemo2
{
 public static void main(String[] args)
 {
 int grade = 88 ;
 if (grade >= 0 && grade <= 100)
 {

 if (grade >= 90)
 System.out.print("A");
 else if (grade >=80)

 System.out.print("B");
 else if (grade >=70)

 System.out.print("C");
 else if (grade >=60)

 System.out.print("D");
 else
 System.out.print("F");

 } //end outer if
 } //end main method
}//end public class

Outputà B

ý Looping statements :
Sometimes, you want to repeat something many times, you need to use the
repeat statement.

- while statement
- do – while statement
- for statement
- nested for
- switch case

o while statement :
The while statement is a looping construct control statement that executes a
block of code while a condition is true. You can either have a single statement
or a block of code within the while loop. The loop will never be executed if the
testing expression evaluates to false. The loop condition must be a Boolean
expression.

àThe syntax of the while loop is:

initialization;

while (loop condition)

{
statements;

counter increment / decrement ;

}

Example: write a program that print numbers 1-10
public class WhileLoopDemo
 {
 public static void main(String[] args)
 {
 int count = 1;
 System.out.println("Printing Numbers from 1 to 10");
 while (count <= 10)
 {
 System.out.println(count++);
 }
 }
}

o do – whil statement :
The do-while loop is similar to the while loop, except that the test is performed
at the end of the loop instead of at the beginning. This ensures that the loop
will be executed at least once. A do-while loop begins with the keyword do,
followed by the statements that make up the body of the loop. Finally,
the keyword while and the test expression completes the do-while loop. When
the loop condition becomes false, the loop is terminated and execution
continues with the statement immediately following the loop. You can either
have a single statement or a block of code within the do-while loop.

àThe syntax of the do-while loop is:

initialization ;

do
{

statements ;

counter increment / decrement ;

}
while (loop condition);

Below is an example that demonstrates the looping construct namely do-
while loop used to print numbers from 1 to 10 :

public class DoWhileLoopDemo
{

 public static void main(String[] args)
 {
 int count = 1;
 System.out.println("Printing Numbers from 1 to 10");
 do {
 System.out.println(count++);
 } while (count <= 10);
 }
}

o For Loops :

The for loop is a looping construct which can execute a set of instructions a
specified number of times. It’s a counter controlled loop.

àThe syntax of the loop is as follows:

for (initialization ; loop condition ; increment expression)

{
 Statements;

}

The first part of a for statement is a starting initialization, which executes
once before the loop begins. The initializationsection can also be a comma-
separated list of expression statements. The second part of a for statement is
a test expression (condition). As long as the expression is true, the loop will
continue. If this expression is evaluated as false the first time, the loop will
never be executed. The third part of the for statement is the body of the
loop. These are the instructions that are repeated each time the program
executes the loop. The final part of the for statement is an increment
expression that automatically executes after each repetition of the loop body.

Typically, this statement changes the value of the counter, which is then
tested to see if the loop should continue. All the sections in the for-header are
optional. Any one of them can be left empty, but the two semicolons are
mandatory. In particular, leaving out the loop condition signifies that the
loop condition is true. The (; ;) form of for loop is commonly used to construct
an infinite loop ...

Statement is executed after the loop body is done. Generally it is being used
to increment or decrement the loop variable.

Following example shows use of simple for loop.

for (int i = 0 ; i < 3 ; i++)
{
 System.out.print("i is : " + i + " ");
}

Output à i is : 0 i is :1 i is :2

- It is possible to initialize multiple variable in the initialization block of the for
loop by separating it by comma as given in the below example.

for (int i=0 , j=5 ; i<5 ; i++)

- It is also possible to have more than one increment or decrement section
as well as given below.

for (int i=0 ; i <5 ; i++ , j++)

- If you put a semicolon at the end of the sentence or that he was the
starting value is on the rise and the condition is true, but the amount of
increase is declining, it will not be implemented and there will be no output.

for (int i=0 ; i <5 ; i++) ;

However it is not possible to include declaration and initialization in the
initialization block of the for loop.

Also, having multiple conditions separated by comma also generates the
compiler error. However, we can include multiple condition with && and ||
logical operators.

Below is an example that demonstrates the looping construct namely for loop
used to print numbers from 1 to 10.

public class ForLoopDemo
{

 public static void main(String[] args)
 {
 System.out.println("Printing Numbers from 1 to 10");
 for (int count = 1; count <= 10; count++)
 {
 System.out.println(count);
 }
 }
}

Example : write a program that ask user to insert end value and print an
even numbers from 0 to end value .

import java.util.Scanner ;
public class EVEN_NUMBERS
{
 public static void main(String[] args)
 {
 Scanner input = new Scanner (System.in);

 System.out.print("plz. enter end number to print evers --> ");

 int end = input.nextInt(); // input from user

 System.out.println("Printing even number between 0 - " + end);

 for (int i= 0 ; i <= end ; i++)
 {
 if (i % 2 ==0) // if even print it
 System.out.print(i + "\t");
 } // end if

 System.out.println();
 } //end main method

} //end of class

o nested for :

he placing of one loop inside the body of another loop is called nesting.
When you "nest" two loops, the outer loop takes control of the number of
complete repetitions of the inner loop. While all types of loops may be nested,
the most commonly nested loops are for loops.

àThe syntax of the nested for loop is as follows:

for (initialization 1; condition 1 ; counter 1)
{

for (initialization 2; condition 2 ; counter 2)
{
statements ;
}

}

Example :
public class ForLoopDemo {

 public static void main(String[] args)
 {
 System.out.println("Printing Numbers from 1 to 10");
 for (int i = 1; i <= 10; i++)
 {
 for (int j = 1 ; j <i ; j++)
 System.out.print(j);

 System.out.println();

 }
 }
}

Example :
import java.util.Scanner ;
public class Stars
{
 public static void main(String[] args)
 {
 for (int i=1 ; i <= 5 ; i++)
 {
 for(int j = 1 ; j <= i ; j++)
 System.out.print("*") ;

 System.out.println();
 } //end for

 } //end main method
} //end class

Example :
import java.util.Scanner ;
public class INVERSE_STARS{
 public static void main(String[] args) {
 int i , s , j ;

 for (i=5 ; i >0 ; i--)
 {
 for(j = 1 ; j <= i ; j++)
 System.out.print("*") ;

 System.out.println();

 for(s=5 ; s>=j-1 ; s--)
 System.out.print(" ");
 }

 System.out.println(); }}

Example :
Public class DYMOND{
public static void main(String[] args){
int x=11;
int y=x/2; // spaces
int z=1; // *
boolean b1=true;
boolean b2= true;

 for(int i=0;i<x;i++)
 {

 for(int j=0;j<y;j++)
 {

 System.out.print(" ");
 }

 for(int k=0 ; k<z ; k++)

 {
 System.out.print("*");

 }

 if(y==0) b1=false;
 if(z==x) b2=false;
 y=b1?y-1:y+1;
 z=b2?z+2:z-2;

 System.out.println();
 } }}

o switch case :
A switch statement allows a variable to be tested for equality against a list of
values. Each value is called a case, and the variable being switched on is
checked for each case.

àThe syntax of switch case is follows:

switch (expression)

{

case value 1 : statement 1 ;

break; //optional

case value 2 : statement 2 ;

break; //optional

:

case value n1 : statement n ;

break; //optional

default: //optional

statement; } //end of switch

The following rules apply to a switch statement:

- The variable used in a switch statement can only be a byte, short, int, or
char.

- You can have any number of case statements within a switch. Each
case is followed by the value to be compared to and a colon.

- The value for a case must be the same data type as the variable in the
switch, and it must be a constant or a literal.

- When the variable being switched on is equal to a case, the statements
following that case will execute until a break statement is reached.

- When a break statement is reached, the switch terminates, and the flow
of control jumps to the next line following the switch statement.

- Not every case needs to contain a break. If no break appears, the flow
of control will fall through to subsequent cases until a break is reached.

- A switch statement can have an optional default case, which must
appear at the end of the switch. The default case can be used for
performing a task when none of the cases is true. No break is needed in
the default case.

Example:

public class SwitchExample
{
 public static void main(String[] args)
 {
 int i=0;
 switch(i)
 {
 case 0:
 System.out.println("i is 0");
 case 1:
 System.out.println("i is 1");
 case 2:
 System.out.println("i is 2");
 default:
 System.out.println(" flowing switch example!");
 } //end switch bodt
 } //end main method
} // end class

Example:

public class Test
{
 public static void main (String [] arg)
 {
 char grade = 'B';
 switch (grade)
 {
 case 'A' :
 System.out.println("Excelebt !");
 break ;
 case 'B' : case 'C' :
 System.out.println("well done !");
 break ;
 case 'D' :
 System.out.println("you pass !");
 break ;
 default :
 System.out.println("Invalid grade !");
 } //end switch
 }//end main method
} //end public class

ý break and continue in Java :
The statements break and continue in Java alter the normal control flow of
compound statements. The break and continue statements do not make sense
by themselves. Without labels, break and continue refer to the most closely
enclosing for, while, do, or switch statement. With labels the break statement is
legal in a labeled if statement or a labeled {} block.

The break keyword is used to stop the entire loop. The break keyword must
be used inside any loop or a switch statement, it will stop the execution of the
innermost loop and start executing the next line of code after the block.

The continue keyword can be used in any of the loop control structures. It
causes the loop to immediately jump to the next iteration of the loop.

- In a for loop, the continue keyword causes flow of control to immediately
jump to the update statement.

- In a while loop or do/while loop, flow of control immediately jumps to the
Boolean expression.

Example :
public class B_K
{
 public static void main (String [] arg)
 {
 for (inti=1 ; i<10 ; i++)
 {
 If (i==5) break ; // when i == 5 >> stop

 System.out.print(i + "\t");
 } //end for

 System.out.println();

 } //end main method

} //end public class

Classes and Objects

ý Class and Objects :

Class Definition: A class is a template for an object, and defines the data
fields and methods of the object. The class methods provide access to
manipulate the data fields.

è The general form of a simple class is:

modifier class classname
{

modifier data-type instance-variable1;
modifier data-type instance-variable2;
…
modifier data-type instance-variableN;

modifier return-data-type class-method1(parameters)
{

 statements;
}
modifier return-data-type class-method2(parameters)
{
statements;
}
…
modifier return-data-type class-method2(parameters)
{

 statements;
}

}

Notes :
è All fields and methods of a class are always available to the code in

the class itself; the class always “knows” about its own data fields and
methods.

è At least, in your code it have one class "Public class" and one method

"main method".

ý Creating Objects(new Operator) :
The new operator creates a single instance of a class and returns a reference
to that object. During execution of a new operator, Java allocates enough
space to store the fields of the object. When initialization of the object is
complete, Java returns a reference to the new object. If insufficient resources
(memory space) are available to create the object, then the system may run
the garbage collector.

è The general form of declare an object:

ClassName ObjectName = new ClassName(Parameter);

- ClassName : the name of public class
- ObjectName : any valid name such as : obj … .
- new : key word to call constructor " will talk with him later ".
- Parameter : if you need to sent values or anything , you can use it but

it an optional .

v Method Declaration :
A method is defined inside of a class definition at the same level as the
instance variables. Each method in a class may take on a specific number of
input parameters. The method may return a data type, which may be a
primitive data type or a reference type (object). Furthermore, a class method
may be proceeded by a modifier to define the accessibility of the method, for
example public or private…

è The general form of declare an method :

Modifier [static] return-type class-method(parameter-list)
{
method statements;
}

- class maybe contain more than one method , but at least one "main"

- Modifier : public , private , protected , Default .

è Public: A public member function can be invoked by any other

member function in any other object or class.

è Protected: A protected member function can be invoked by any

member function in the class in which it is defined or any subclasses

of that class; even if the subclass is in another package (In Java,

protected members can be invoked in any class in the same

package too).

è Private: A private member function can only be invoked by other

member functions in the class in which it is defined, but not in the

subclasses.

è Default (No keyword, simply leave it blank): The member function is

effectively public to all other classes within the same package, but

private to classes external to the package. This is sometimes called

package visibility or friendly visibility.

- static : static methods use no instance variables of any object of the

class they are defined in. If you define a method to be static, you will
be given a rude message by the compiler if you try to access any
instance variables. It’s an optional keyword .

- Java does not support a variable number of parameters (as in C).

- If the method has no parameters, then the method declaration should

include a pair of empty parenthesis.

ý Constructor :
A class constructor can be invoked to assign specific values directly to the data
fields.

- Constructors have the same name as the class.
- Constructors are not class methods and cannot return a data type.

è Syntax of constructor :

public class ClassName
{

DataType Var.Name ;
DataType Var.Name ;
:
DataType Var.Name ;

public ClassName (parameter)
{
Var.Name = value ;
:
Var.Name = value ;
}

}

Example : this example discussing default constructor .
public class Test
{
 static int x ;
 static double y ;

 public Test ()
 {
 x = 5 ;
 }

 public void sum ()
 {
 System.out.println("the summation field var. is :" + (x+y));
 }

 public static void main (String [] arg)
 {
 Test obj = new Test ();
 obj.sum();
 }
}

remember :
Field variables Take
default values when
defined .
intà 0
doubleà 0.0
charà ' '
String à null

The parameter in
constructor is optional , if
the constructor has not
parameter that name
Defoult constructor , and
if has a parameter that
name with parameter

Declare default Constructor
publicClassName()

when you create an object ;
the constructor automatically
call …

Example : example discussing constructor with parameter .
public class Test1
{
 static int x ;
 static double y ;

 public Test1(int a , double b)
 {
 x = a ;
 y = b ;
 }

 public void sum ()
 {
 System.out.println("the summation field var. is :" + (x+y));
 }

 public static void main (String [] arg)
 {
 int x = 7 ;
 double y=9 ;

 Test1 obj = new Test1 (x , y);
 obj.sum();
 }
}

Declare Constructor with parameter

Calling the method :
ObjectName.MethodName (Parameter) ;

Store the value of variable a in x
And
Store the value of variable b in y .

Example :
import java.util.Scanner ;
public class project
{
 String Name ; //field variable

 public String set_name (String N)
 {

 Name = N;
 return Name ;
 }

 public void get_name ()
 {
 System.out.println("your name is :" + Name);
 }

 public static void main (String [] arg)
 {

 Scanner input = new Scanner (System.in);
 project obj = new project ();

 System.out.print("Plz. Enter your name ->");
 String My_name = input.nextLine();

 obj.set_name(My_name);

 obj.get_name ();

 System.out.println("Done set and get method ...");

 }

}

Method that return value , must
be declared with return value
data type such that int , String
and put return Keyword .

Method without return value
that must declared with void data
type and no return Keyword .

When method declared with
static , you don’t need to do
instance (declare object).

Call methods .
If the other method non-static , you
will declare an object and call the
methods by her .
Note: main method must be static.

ý Method Overloading
In Java, multiple methods with the same name can be defined in a class,
provided that each method has a different parameter list. The order and type
of the parameters in the list define the signature of the method.

public void m1(); à m1()
public void m1(int); à m1(int)
public void m1(int , double); à m1(int , double);
public void m1(double , int); à m1(double , int);

Example :
public class Circle
{
 static double x,y ;

 public void distance()
 {
 System.out.println(Math.sqrt(x*x + y*y));
 }

 public double distance(double xcordinate , double ycordinate)
 {
 double dx = x - xcordinate ;
 double dy = y - ycordinate ;
 return Math.sqrt(dx*dx + dy*dy);
 }

 public static void main (String [] arg)
 {

 Circle obj = new Circle () ;
 obj. distance ();
 System.out.println(obj.distance(5.0,6.0));

 }
}

Process called Overloading if there
are more than Method with the
same name but different number or
type parameter

method that does not return
value .
void distance() à no
parameter

method that return value .
double distance(double ,double)
àparameter

create an object

ý Scope of Declarations :

You have seen declarations of various Java entities, such as classes,
methods, variables and parameters. Declarations introduce names that can
be used to refer to such Java entities. The scope of a declaration is the
portion of the program that can refer to the declared entity by its name. Such
an entity is said to be "in scope" for that portion of the program. This section
introduces several important scope issues.

The basic scope rules are as follows:

- The scope of a parameter declaration is the body of the method in
which the declaration appears.

- The scope of a local-variable declaration is from the point at which the
declaration appears to the end of that block.

- The scope of a local-variable declaration that appears in the
initialization section of a for statement's header is the body of
the for statement and the other expressions in the header.

- The scope of a method or field of a class is the entire body of the class.
This enables non-static methods of a class to use the class's fields and
other methods.

Example:
public class SCOPE
{
double var1 ;
static int var2 ;

 public static void main(String [] arg)
 {
 int a = 5 ;

 for (int i = 1 ; i <10 ; i++)
 System.out.print(i++);

 }
}

The scope of field variable all of
class !
But , warning : if you would use
field variable in static method ;
the variable must be declared
with static

The scope of a local-variable
declaration is from the point at
which the declaration appears to
the end of that block .

The scope of variable in
statement is from the body of
statement .

ý The Math Class :
It is hard to avoid the Math class in any Java program that requires scientific
or other numeric computations. As with the wrapper classes, the Math class is
part of the java.lang package; so, methods may be used without an explicit
import statement. Table 1 summarizes the most common methods in the Math
class. For a full listing, see the Java API documentation. Unlike the wrapper
classes, the Math class contains no constructor method: Math objects cannot
be instantiated. Therefore, all methods in Table 1 are class methods (aka
static methods).

Ex :
System.out.print(Math.pow(2,3)) ; à 8

Ex :
System.out.print(Math.pow(25.0, 0.5)); à 5.0

Ex :
System.out.print(Math.abs(-3)) ; à 3

Ex :
System.out.print(Math.random()); àRan. # between 0-1

Ex:
System.out.print(Math.PI); à 3.1415

Ex :
System.out.print(Math.max(30,50)); à 50

Ex :
System.out.print(Math.max(10, Math.max(5,15))); à 15

Ex :
System.out.print(Math.min(30,50)); à 30

Ex :
System.out.print(Math.min(5, Math.max(7,3))); à 5

Example : write a program to solutioon this expressions :
 5

22 ba +

import java.util.Scanner ;
public class expressions
{
 public static void main(String[] args)
 {
 Scanner input = new Scanner (System.in);

 int a ,b ;
 double result;
 System.out.print("plz. enter value of a:");
 a= input.nextInt();
 System.out.print("plz. enter value of b:");
 b= input.nextInt();

 result = Math.sqrt(Math.pow(a,2) + Math.pow(b,2)) ;

 System.out.println("the result : " + result);
 } //end main method
} // end class

ý Random Numbers :

Java has a rich toolkit for generating random numbers, in a class named
"Random". This document is a quick guide to using Random. Random can
generate many kinds of random number

ý Gaining Access to Random

Random is defined in the "java.util" library package, so any Java source file
that uses Random must begin with a line of the form

 import java.util.Random;

or

 import java.util.*;

ý Creating Random Number Generators

The easiest way to initialize a random number generator is to use the
parameterless constructor, for example

Random R = new Random();

However, in using this constructor you should recognize that algorithmic
random number generators are not truly random, they are really algorithms
that generate a fixed but random-looking sequence of numbers.

ý Generating Random Integers

To generate a random integer from a Random object, send the object a
"nextInt" message. This message takes no parameters, and returns the next
integer in the generator's random sequence. Any Java integer, positive or
negative, may be returned. Integers returned by this message are uniformly
distributed over the range of Java integers. Here is an example, assuming
that "generator" is an instance of Random:

 int r = generator.nextInt();

Often, programmers want to generate random integers between 0 and
some upper bound. For example, perhaps you want to randomly pick an
index into an array of n elements. Indices to this array, in Java, range from 0
ton-1. There is a variation on the "nextInt" message that makes it easy to do
this: If you provide an integer parameter to "nextInt", it will return an integer
from a uniform distribution between 0 and one less than the parameter. For
example, here is how you could use a random number generator object to
generate the random array index suggested a minute ago:

 int randomIndex = generator.nextInt(n);

Example : write a program that print 5 random numbers
import java.util.Random ;
public class Ran {
 public static void main(String [] arg)
 {
 Random R = new Random ();

 for (int i = 0 ;i < 5 ; i++)
 {
 System.out.println(R.nextInt(5));
 } //end for
 } // end main method
} //end class

Example :
Write in Java program that prints a random number of stars more than 10
times each group on the line
import java.util.Random ;
public class expressions
{
 public static void main(String[] args){
 Random R = new Random () ;

 for (int i = 1 ; i < 10 ; i++)
 {
 int x = R.nextInt(10);

 for (int j = 1 ; j < x ; j++)
 System.out.print("*");
 System.out.println();
 } }}

number 5 that mean ,
Means that the number of
possibilities is 5 . (0-4)

Example : write a program that insert 10 numbers from user and check if the
user entered is maches with an random number between 0-4 , in the end print
number of correct gessing .
 import java.util.Random ;
import java.util.Scanner ;
public class Ran2
{
 public static void main(String [] arg)
 {
 Random R = new Random ();
 Scanner input = new Scanner (System.in);

 int x ;
 int counter = 0 ;

 System.out.println("System.out.println()");

 for (int i = 0 ;i < 10 ; i++)
 {
 System.out.print("Plz. Enter a number to check --> ");
 x = input .nextInt();

 if (x == R.nextInt(5))
 {
 counter ++ ;
 System.out.println("True trail ");
 }
 else
 System.out.println("False trail ");
 }

 System.out.println();
 System.out.println("number of correct guess is :" + counter);

 } //end main metnod

} //end class

if the user enterd maches
with random number
increesing variable ny 1

ý Java Final Keyword :

The final keyword has more than one meaning :
è a final class cannot be extended
è a final method cannot be overridden
è final fields, parameters, and local variables cannot change their

value once set .

Example :
public class Test_Final
{
 public static void main (String [] arg)
 {

 int x = 2 ;
 System.out.print ("x = " + x); // x= 2
 x = 5 ;
 System.out.print ("x = " + x); // x=5

 final int y = 2 ;
 System.out.print ("y = " + y); // y= 2
 y = 5 ; // Error : cannot assign a value to final variable y

 System.out.print ("y = " + y);
}

}

Example :
public class FinalVariableExample
{
 public static void main(String[] args)
 {
 final int hoursInDay=24;
 System.out.println("Hours in 5 days = " + hoursInDay * 5);
 }
}

ý This class :

Within an instance method or a constructor, this is a reference to the current
object , the object whose method or constructor is being called. You can refer
to any member of the current object from within an instance method or a
constructor by using this .

Example :
 public class Field_var_use
{

 int x ;
 double y ;

 public Field_var_use () //Defoult constructor
 {
 int x = 10 ;
 System.out.println("x in local is : " + x);

 System.out.println("x in field is : " + this.x);
 }

 public static void main(String [] arg)
 {

 Field_var_use obj = new Field_var_use () ;
 } //end main method

} // end public class

Field variables that
initially vales by default :
int à 0
double à 0.0
String à null
char à ''

this à to call field var. if
there is an local variable
found that carry the same
name !

when you declare an
object , constructor will be
automatically calling

Arrays

Suppose we have here three variables of type int with different identifiers for
each variable.

int number1;
int number2;
int number3;
number1 = 1;
number2 = 2;
number3 = 3;

As you can see, it seems like a tedious task in order to just initialize and use
the variables especially if they are used for the same purpose.

In Java and other programming languages, there is one capability wherein we
can use one variable to store a list of data and manipulate them more
efficiently. This type of variable is called an array.

An array stores multiple data items of the same data type, in a contiguous
block of memory, divided into a number of slots.

ý Arrays two types :

- One Diminution Array
- Multi Diminution Array

o One Diminution Array
To declare an array, write the data type, followed by a set of square brackets[]
, followed by the identifier name.

è Declaring Arrays

DataType []ArrayName;

or
DataType ArrayName[];

To instantiate (or create) an array, write the new keyword,followed by the
square brackets containing the number of elements you want the array to
have.

ArrayName = new DataType [SizeOfArray];

You can also instantiate an array by directly initializing it with data.

DataType ArrayName[] = {value1 , value2,… , valueN }

Example :
int arr[] = {1, 2, 3, 4, 5};

è This statement declares and instantiates an array of integers with five

elements (initialized to the values 1, 2, 3, 4, and 5).

ý Accessing an Array Element :
To access an array element, or a part of the array, you use a number called
an index .

index number :
è assigned to each member of the array, to allow the program to access

an individual member of the array.
è begins with zero and progress sequentially by whole numbers to the

end of the array.

NOTE 1: Elements inside your array are from 0 to (sizeOfArray-1).

NOTE 2: once an array is declared and constructed, the stored value of each
member of the array will be initialized to zero for number .

To accessing code , you can call from index , such as arr[0] = 5 ;

Example :
public class Arr
{
 public static void main(String [] arg)
 {
 int x [] new int [5];
 x[0] = 5 ;
 x[1]= 3 ;
 x[3] = 7 ;
 x[4]= x[0];
}}

Remember : if you declare an array with integer , all of array that initial values
by 0's , double 0.0 …

Example:
Write program in Java enters 6 integer numbers, and print it …
Hint: Use an Arrays to complete it
import java.util.Scanner ;

public class Arr
{
 public static void main(String [] arg)
 {
 Scanner input = new Scanner (System.in);
 int x [] = new int [6];

 for (int I = 0 ; I < 6 ; I++)
 x[I] = input.nextInt();

 for (int I = 0 ; I < 6 ; I++)
 System.out.println("x[" + I + "]= " + x[I]);

 }

}

o Multidimensional Arrays :

àMultidimensional arrays are implemented as arrays of arrays.
àMultidimensional arrays are declared by appending the appropriate number
of bracket pairs after the array name.

è Declaring Arrays :

DataType ArrayName [][] = new DataType [row][col] ;

To access an element in a multidimensional array is just the same as
accessing the elements in a one dimensional array.

Example :
public class Arr
{
 public static void main(String [] arg)
 {
 int x [][] = new int [3][2];
 x[0][0] = 5 ;
 x[0][1] = 3 ;
 x[1][1] = 7 ;
 x[2][0] = 9 ;
 x[2][1] = x[0][0] ;

 }

}

ý Array Sorting :
you can sort an array ascending or descending as you want …

è in one Diminution array you can use for loop and variable to sort this ,

or

Arrays.sort(ArrayName);

è in two diminution there many methods to complete it , and you can

convert it to one diminution array and sort one diminution , after this
you can convert to two diminution array !! .

public class ClassName
{

public static void main (String [] arg)
{
Statements ;
}

}

The phrase String[] args says that main()
has a parameter which is an array of String
references. This array is constructed by the
Java system just before main() gets control.
The elements of the array refer to Strings
that contain text from the command line
that starts the program.

Example :

Object Oriented Programming

Inheritance

Reusability- building new components by utilizing existing components .. It is
always good / “productive” if we are able to reuse something that is already
exists rather than creating the same all over again. This is achieve by creating
new classes, reusing the properties of existing classes.

This mechanism of deriving a new class from existing / old class is called
"inheritance”.. The old class is known as “base” class, “super” class or
"parent” class”; and the new class is known as “sub” class, “derived” class,
or “child” class.

The inheritance allows subclasses to inherit all properties (variables and
methods) of their parent classes.

è A subclass/child class is defined as follows:

class SubClassName extends SuperClassName
{
fields declaration;
methods declaration;
}

The keyword “extends” signifies that the properties of super class are
extended to the subclass. That means, subclass contains its own members as
well of those of the super class. This kind of situation occurs when we want to
enhance properties of existing class without actually modifying it.

Example :
class A
{
 public int x ;

private double y ;
}

class B extends A
 {

int a ;
int b ;

 }

Example :
This example shows how ti make Inheretance with more than class .

 class Member
{
 public int id;
 private String name;

 public Member () //Default constructor
 {
 id = -1;
 name="-";
 }
}

class Employee extends Member
{
 double salary;
}

class student extends Member
{
 double avg;
}

public class java_inh
{
 public static void main(String [] arg)
 {
 Employee obj1 = new Employee ();
 obj1. id = 10 ;

 System.out.print(obj1.id); // 10
 student obj2 = new student ();
 obj2.avg = 10 ; // avg has private access in student

 }
}

Employee Student

Member

only one public class in code ,
and the program Save as in that
name .

Mostly , Object is created from
the subclass . Where it contains
data as well as data of Super
Class .

Constructor can't be inherit

Access Modifier :

ü public and no modifier : the same
way as used in class level.

ü private : members can only access.
ü protected : can be accessed from

‘same package’ and a subclass
existing in any package can access.

Example :
 class A
{
 public int x ;

 public void print()
 {
 System.out.println("x in Super =" + x);

 }
}

class B extends A
{

 public double z ;
 public void print()

 {
 System.out.println("Z in Sub =" + z);

 super. print() ;
 }

}

public class Test
{
 public static void main (String [] arg)

 {
B obj = new B() ;

 obj.print();
}

}

There are two method that named
"print" in class A and B …

If you want to call something
what is in the Super Class such as
class A , calling him by " super "
word Keyword .

Strings

Strings ,,, which are widely used in Java programming , are a sequence of
characters. In the Java programming language, strings are objects.

The Java platform provides the String class to create and manipulate strings.

è Declare Strings :

String Var.Name = "Text" ;

String Var.Name = new Var.Name ("Text");

Note:

The String class is immutable, so that once it is created a String object cannot
be changed. The String class has a number of methods, some of which will be
discussed below, that appear to modify strings. Since strings are
immutable, what these methods really do is create and return a new
string that contains the result of the operation.

String x = "hello" ;
 x = "EHAB" ;

As with any other object, you can create String objects by using
the new keyword and a constructor. The String class has thirteen constructors
that allow you to provide the initial value of the string using different sources,
such as an array of characters.

Example :

char arr[] = {'w','e','l','c','o','m','e'};
String ad_ar = new String (arr);
System.out.print(ad_ar); //welcome

à String : is a reference data type .
àyou will insert text inside Double Quotes

ý String Methods :

è there are a lot of methods of String, I will display the most

Example :

 public class String_methods
{
 public static void main (String [] arg)
 {

 String s1 = "University" ;
 String s2 = "uNiVeRsItY";
 String s3 = "Unooo" ;
 String s4 = " Of Jordan";

 System.out.println("University");

 System.out.println("0123456789");
 System.out.println();

 System.out.println("the char at index of 3 is " + s1.charAt(3));

System.out.println(s1.compareTo("University"));

Returns the character at the specified
index. An index ranges from 0 to
length() - 1. The first character of the
sequence is at index 0, the next at index
1, and so on, as for array indexing.

The comparison between the string and a string
of other depending on the ASCII code :
aà 97 ; A à 65 ; SPACE à 32 ; 0 à 48

 System.out.println("s1 + s4 = " + s1.concat(s2));

 System.out.println("s1 ? = s2 :" + s1.equals(s2));

 System.out.println("s1 ? = s2 :" + s1.equalsIgnoreCase(s2));

 System.out.println("s3 End with oo :" + s3.endsWith("oo"));

 System.out.println("s4 Start with of :" + s4.startsWith("of"));

 System.out.println("length of s2 : " + s2.length());

 System.out.println("Upper Case s2 :" + s2.toUpperCase());

 System.out.println("Lower Case s2 :" + s2.toLowerCase());

} //end of main

} // end of public class

Compares this String to another String ,Two
strings are considered equal case if they are of
the same length, and corresponding characters
in the two strings

endWith : Check if end of String
equals the letters or not ,, that
return true if yes or false if no .
startWith: : Check if initial of
String equals the letters or not ,,
that return true if yes or false if no
.

Example :

write a program in java that insert text from user and print reveres !

import java.util.* ;

 public class text_reveres
{

 public static void main (String [] arg)
{
 Scanner input = new Scanner (System.in);
 System.out.print("Plz. Enter an Text ->");
 String text = input.nextLine ();

 System.out.print("an Inverse text is ->") ;
 for (int i = text.length()-1 ; i >=0 ; i--)
 System.out.print (text.charAt(i));
 System.out.println();

 }
}

Exception Handling

Programmers in any language endeavor to write bug-free programs,
programs that never crash, programs that can handle any circumstance with
grace and recover from unusual situations without causing a user any undue
stress. Good intentions aside, programs like this don’t exist.

In real programs, errors occur because programmers didn’t anticipate
possible problems, didn’t test enough, or encountered situations out of their
control-bad data from users .

Errors usually occur because of a lack of efficiency of the code or the same
user Bad data entry …

- Runtime exceptions: A runtime exception is an exception that occurs
that probably could have been avoided by the programmer. As
opposed to checked exceptions, runtime exceptions are ignored at the
time of compilation.

- Errors: These are not exceptions at all, but problems that arise beyond

the control of the user or the programmer. Errors are typically ignored
in your code because you can rarely do anything about an error. For
example, if a stack overflow occurs, an error will arise. They are also
ignored at the time of compilation.

ý Types of Exceptions :

- Out of bounds
- Input mismatch exception
- Arithmetic exception
- Null pointer exception
- ………

after compiling the code that
will appear problems if found .

after executing program maybe
appear exception at run time .

o OutOfBoundsException : This exception occurs when you out the
Array for the specified limit …

Example :
int x[] = {4,5,6};
x[1] = 15 ;
x[3] = 10 ; //exception

o InputMismachException : This exception occurs when you enter the

wrong value to a variable through input from user …

Example :
Scanner input = new Scanner (System.in);
int y = input.nextInt(); //à5.3 exception

o ArithmaticException : This exception occurs when you divided by
zero …

Example :
Scanner input = new Scanner (System.in);
int x = input.nextInt();
int y = input.nextInt();
int z = x/y ; // if you enter y =0 , exception will be appear .

o NullPointerException : This exception occurs when you not create an
object from class …

Example :
Scanner input ;
int x = input.nextInt(); // exception

Note :
Previous problems can be solved with numerous ways including one that he
put a warning message to the user or using control sentences if () …

ý Catching Exceptions

A method catches an exception using a combination of the try and catch
keywords. A try/catch block is placed around the code that might generate an
exception. Code within a try/catch block is referred to as protected code, and
the syntax for using try/catch looks like the following:

try
{

Statements that may generate exception
}
catch (ExceptionType e)
{

Statement to process exception
}
.
.
.
.
finally
{

Statement to release resources .
}

Example :
import java.util.Scanner ;
public class Test
{

public static void main (String [] arg)
{
 Scanner input = new Scanner (System.in);

 System.out.print("Enter the first number : ");
 int x = input.nextInt();

 System.out.print("Enter the Second number : ");
 int y = input.nextInt();

 int z = x/y ;

 System.out.print("The resoult is :" + z);
}

}

• Encloses the code that may
generate an exception

• if the exception occurs , the
remaining code in the try block
will be skipped .

• a try block must be following by
at least one catch or finally block .

• each try block is followed by one
or more catch blocks

• each catch block specifies the type
of exception if can catch .

• each catch block have a single
parameter only

• finally block of code always executes, whether or not an
exception has occurred.

• it is optional appear after the last catch block if one exist.

• if the user input x = any
integer number and y = any
integer number except 0 ,,,
it's Ok ..

• if the user input any number
not integer or input y = 0 !!
that is exception occurs

Example :
import java.util.Scanner ;
import java.util.InputMismatchException;
public class Test
{

public static void main (String [] arg)
{
 try
 {
 Scanner input = new Scanner (System.in);
 System.out.print("Enter the first number : ");
 int x = input.nextInt();

 System.out.print("Enter the Second number : ");
 int y = input.nextInt();
 int z = x/y ;
 System.out.println("The resoult is :" + z);
 }

 catch (ArithmeticException e)
 {
 System.out.println("you can't divided by zero !");
 }

 catch (InputMismatchException e)
 {
 System.out.println("Can't be casting !");
 }

 finally
 {
 System.out.println("finally always execute !");
 }

}

}

if the user input an integer number in
x and will enter an integer number in y
except 0 . that’s Ok

if the user input an integer number in
x and enter 0 in y ,,, exception occurs
, will go to " ArithmeticException "
catch block and go to execute finally
and go out of try statement .

if the user enter not an integer number
in x or y , exception occurs and go to
" InputMismatchException " catch
block and go to execute finally and go
out of try statement .

If you want to use " InputMismatchException "
you will import the class InputMismatchException
 from java.util package .

ý Exception Word :

If none of the previous catch block are passing , you put word "Exception " ,
they implemented in the event there was no Block is winner …

àMust put it block after all catch block's and before finally if found …

import java.util.Scanner ;
import java.util.InputMismatchException;
public class Test
{

public static void main (String [] arg)
{
 try
 {
 Scanner input = new Scanner (System.in);
 System.out.print("Enter the first number : ");
 int x = input.nextInt();

 System.out.print("Enter the Second number : ");
 int y = input.nextInt();
 int z = x/y ;
 System.out.println("The resoult is :" + z);
 }

 catch (InputMismatchException e)
 {
 System.out.println("Can't be casting !");
 }

 catch (Exception e)
 {
 System.out.println(" Exception block execute") ;
 }

 finally
 {
 System.out.println("always execute !");
 }

}

}

Note :
it must be the last catch block and
before finally .

Java Applet

ý Types of Java Program (SE) :

1. Application Programs .

2. Applet Programs .

à Application programs : are stand-alone programs that are written to
carry out certain tasks on local computer such as solving equations, reading
and writing files etc. (must Contain main method)
The application programs can be executed using two steps

1. Compile source code to generate Byte code using Javac compiler.
2. Execute the byte code program using Java interpreter.

à Applet programs: Applets are small Java programs developed for
Internet applications. An applet located in distant computer can be
downloaded via Internet and executed on a local computer using Java
capable browser .(maybe contain main method) .

ý Java development process :

The javac command compiles Java source code (.java) into bytecode
(.class).

These bytecodes are loaded and executed in the Java virtual machine (JVM),
which is embeddable within other environments, such as Web browsers and
operating systems.

ý Displaying applets :

An apple is a Java program that is referenced by a Web page and runs inside
a Java-enabled Web browser.

An applet begins execution when an HTML page that "contains" it is loaded.

Either a Java-enabled Web browser or the applet viewer is required to run an
applet.

Note : We Will Use JFrame class in Programming .

the screen of windows

è The Syntax to write code applet :

import java.awt.Graphics;
import java.awt.Color ;
import javax.swing.JFrame ;
public class ClassName extends JFrame
{
 public ClassName ()
 {
 setTitle("String");

 SetSize(Width , Higth);
 SetVisible(Boolean var);
 } //end constructor

 public void paint(Grapgics g)
 {
 super.paint(g);
 .
 g.methods () ;

 .
 } //end paint method
} //end of public class

the constructor : will must contain three methods :

1. setTitle("String") : Determine the Title shown on the title bar ,if you
don't determine this , the default shown no title .

2. setVisible(boolean) : Control the show and did not show the form

to view the results , if you don’t determine it , the default is false .
3. setSize(Wedth , Height) : Control the size of the form , if you don’t

determine the size , the size is (0,0) .

The awt provides user interface
components , such as Label , Button ,
List ,... But it does not contain
ingredients for Graphics such as Line ,
Rectangle , Oval ...

Therefore we must inherit this the class
using something called Overriding ….
Where we can use the library is ready
and the amendment to the components .

ý Applet methods :

- Draw Line :
to draw a line : g.drawLine (x, y, z, w);

à Draws a line, between the points (x1, y1) and (x2, y2) in this graphics
context's coordinate system.

-Draw String :
to draw a string : g.drawString("String", x ,y);

àDraws the text given by the specified string, x and y is the start position of
draw string .

rectangleDraw a -
of Rectangle : of the specified outlineto draw the

g.drawRect(x, y, width, height);

to draw the fill color Rectangle : g.fillRect(x, y, width, height);

-Draw an Oval :
 to draw the outline of the specified of Oval :

 g.drawOval(x, y, width, height);

to draw the fill color Oval : g.fillOval(x, y, width, height);

àin Rectangle and oval , x and y is the initial values , width and height is the
diminutions of rectangle .

-Draw Rounded Rectangle :
to draw the outline RoundRect :

g. drawRoundRect(x,y, width, height , arcX , arcY);

to draw the fill color RoundRect :

g. fillRoundRect(x,y, width, height , arcX , arcY);

àThe drawRoundRect method draws rectangles with rounded edges and it
requires six arguments . The first four work the same as for normal
rectangles. The last pair of numbers determine how far along the edges of the
rectangle the arc for the corner will start. If the numbers are large, the
rectangle has a more rounded appearance .

Note : fillRoundRect is the same ,but with fill color .

-Draw Arc :

to draw the Arc : g. drawArc(x,y, w, z , startAngle , arcAngle);

to draw the fill color Arc : g. fillArc(x,y, w, z , startAngle , arcAngle);

àDraw the outline of a circular or elliptical arc covering the specified
rectangle. and it requires six arguments . The first four work the same as for
normal Oval. The last pair of numbers determine the beginning angle. and
the last arguments determine .

-Draw PolyLine :

to draw the boarder of polyLine : g.drawPolyline (arrayX[] , array[] , nPoints);

àDraws a sequence of connected lines and not closed shape defined by

arrays of x and y coordinates. Each pair of (x, y) coordinates defines a point.

The figure is not closed if the first point differs from the last point. there are

three parameter the first and second one is an array of x,y points and the last

one is the total number of points .

-Draw Polygon :

to draw the outline of polygon : g.drawPolygon(arrayX[] , array[] , nPoints);

to draw the fill color polygon : g.fillPolygon(arrayX[] , array[] , nPoints);

àDraws a sequence of connected lines and closed shape defined by arrays

of x and y coordinates. Each pair of (x, y) coordinates defines a point. there

are three parameter the first and second one is an array of x,y points and the

last one is the total number of points .

Note that : you can fill color the polygon because it a close shape but you

can't fill color a polyline .

- clear Rectangle :

to clear an area of rectangle : g.clearRect(x , y , width , height);

àClears the specified rectangle by filling it with the background color of the
current drawing surface.

ý Color Class :

to use Colors in Java Applet , you will use Color Class and import it by :

import java.awt.Color

è there are RGB Type of Colors , every color contain 256 of Degree
(0-255) .

è many methods to use a Color Class :
ü setColor(Color.ColorName);

Color.red

Color.blue

Color.black

Color.ColorName

ü Color ObjectName = new Color (D_O_R , D_O_G , D_O_B);

setColor(ObjectName) ;

Note :
If you not use a Color Class to change the color : the Default color is black .

After you select a color, the
color will not be applied unless
use : setColor (obj);

Example :
import java.awt.Color ;
import java.awt.Graphics ;
import javax.swing.JFrame;
public class Drawing extends JFrame
{

public Drawing ()
{
setTitle("Applet");
setSize(300,300);
setVisible(true);
} //end constructor

 public void paint(Graphics g)
 {
 super.paint(g) ;

 g.drawOval(50,50,100,100);
 g.drawOval(70,70,100,100);
 g.drawOval(90,90,100,100);

 } //end paint

} //end drawing calss

Simple graphic + Simple graphic = Big and Nice graphic ☺

if you need to use the Color
library , you will import Color
class :
import java.awt.Color ;

I prefer to be in this order so that
there will be no problems in the
presentation of results .

Example :
import java.awt.Color ;
import java.awt.Graphics ;
import javax.swing.JFrame;
public class Drawing extends JFrame
{

public Drawing ()
{
setTitle("Applet");
setSize(220,430);
setVisible(true);
} //end constructor

 public void paint(Graphics g)
 {
 super.paint(g) ;

 g.setColor(Color.red);
 g.fillOval(25, 180, 50, 50);
 g.drawLine(50, 230, 50, 330);
 g.drawLine(50, 330, 25, 380);
 g.drawLine(50, 330, 75, 380);
 g.drawLine(50, 255, 25, 230);
 g.drawLine(50, 255, 75, 230);

 g.setColor(Color.cyan);
 g.fillOval(75, 180, 50, 50);
 g.drawLine(100, 230, 100, 330);

 g.drawLine(100, 330, 75, 380);
 g.drawLine(100, 330, 125, 380);

 g.drawLine(100, 255, 75, 230);
 g.drawLine(100, 255, 125, 230);

 g.setColor(Color.blue);
 g.fillOval(113, 80, 75, 75);
 g.drawLine(150, 155, 150, 305);
 g.drawLine(150, 305, 113, 380);
 g.drawLine(150, 305, 187, 380);
 g.drawLine(150, 193, 113, 155);
 g.drawLine(150, 193, 187, 155);

 } //end paint

} //end drawing calss

Example : Draw Monaleza
import java.awt.Color ;
import java.awt.Graphics ;
import javax.swing.JFrame;
public class Monalisa extends JFrame
{

public Monalisa()
{
setTitle ("Monaleza ! ");
setSize(400,400);
setVisible(true);
}

public void paint(Graphics g)
{
super.paint(g);
Color c1 = new Color(255,210,145);
g.setColor(c1);
g.fillRoundRect(147,84,103,74,23,23);
g.fillOval(147,94,103,132);
g.setColor(Color.black);

int[] hairX = { 125,135,150,220,270,315,245,235,200,160,150,155,180,190,125};
int[] hairY = { 315,120,75,60,95,290,320,120,90,90,135,200,230,260,315};

g.fillPolygon(hairX,hairY,15);

int[] eyebrow1X = { 151, 168, 174, 171, 178, 193 };
int[] eyebrow1Y = { 145, 140, 148, 184, 191, 188 };
g.drawPolyline(eyebrow1X, eyebrow1Y, 6);

int[] eyebrow2X = { 188, 197, 213, 223 };
int[] eyebrow2Y = { 146, 141, 142, 146 };
g.drawPolyline(eyebrow2X, eyebrow2Y, 4);

int[] mouthX = { 166, 185, 200 };
int[] mouthY = { 199, 200, 197 };
g.drawPolyline(mouthX, mouthY, 3);

g.fillOval(161,148,10,3);
g.fillOval(202,145,12,5);

} //end Monalisa calss

Example : Draw Android Logo
import java.awt.Color ;
import java.awt.Graphics ;
import javax.swing.JFrame;
public class Drawing extends JFrame
{

 public Drawing ()
 {
 setTitle("android");
 setSize(300,400);
 setVisible(true);
 } //end constructor

 public void paint(Graphics g)
 {
 super.paint(g) ;
 g.setColor(new Color(153, 204, 0));

 g.fillArc(75, 55, 150, 125, 0, 180);
 g.fillRect(75, 125, 150, 150);
 g.fillRoundRect(75, 260, 150, 20, 20, 20);
 g.fillRoundRect(40, 120, 30, 110, 30, 30);

g.fillRoundRect(230, 120, 30, 110, 30, 30);
g.fillRoundRect(95, 260, 30, 70, 30, 30);
g.fillRoundRect(175, 260, 30, 70, 30, 30);
g.drawLine(125, 65, 100, 40);
g.drawLine(175, 65, 200, 40);
g.setColor(Color.white);
g.fillOval(115, 80, 10, 10);
g.fillOval(175, 80, 10, 10);

 } //end paint
} //end drawing calss

~(ونسافتَنافَسِ الْمتَنفَلْي كي ذَلفو كسم هتَامخ)~

 



 
 

 
 

 
 

 
 

~)يلالْمِ إِلاَّ قَلالْع نم يتُما أُوتمو(~
 

 
 

 
 

 
Alqadoumi_ehab@yahoo.com

https://www.facebook.com/sadlover91

https://twitter.com/ehab_qadoumi

+962788124977

 

mailto:Alqadoumi_ehab@yahoo.com
https://www.facebook.com/sadlover91
https://twitter.com/ehab_qadoumi

