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Abstract— The following assumptions were made in developing the mathematical formulations of laminated
plates:

1. All layers behave elastically;

2. Displacements are small compared with the plate thickness;

3. Perfect bonding exists between layers;

4. The laminate is equivalent to a single anisotropic layer;

5. The plate is flat and has a constant thickness;

6. The plate buckles in a vacuum and all kinds of damping are neglected.

Unlike homogeneous plates, where the coordinates are chosen solely based on the plate shape, coordinates
for laminated plates should be chosen carefully. There are two main factors for the choice of the coordinate
system. The first factor is the shape of the plate. Where rectangular plates will be best represented by the
choice of rectangular (i.e. Cartesian) coordinates. It will be relatively easy to represent the boundaries of
such plates with coordinates. The second factor is the fiber orientation or orthotropy. If the fibers are set
straight within each lamina, then rectangular orthotropy would result. It is possible to set the fibers in a
radial and circular fashion, which would result in circular orthotropy. Indeed, the fibers can also be set in
elliptical directions, which would result in elliptical orthotropy.

Keywords: Mathematical formulation, mathematical modeling, finite element method, first order shear
deformation theory, Fortran program

I. INTRODUCTION

The choice of the coordinate system is of critical importance for laminated plates. This is because
plates with rectangular orthotropy could be set on rectangular, triangular, circular or other boundaries.
Composite materials with rectangular orthotropy are the most popular, mainly because of their ease in design
and manufacturing. The equations that follow are developed for materials with rectangular orthotropy.

Figure 1.1 below shows the geometry of a plate with rectangular orthotropy drawn in the cartesian
coordinates X, Y, and Z or 1, 2, and 3. The parameters used in such a plate are: (1) the length in the X-direction,
(@); (2) the length in the Y — direction (i.e. breadth), (b); and (3) the length in the Z — direction (i.e. thickness), (h).
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Figure 1.1 The geometry of a laminated composite plate

1JAR Journal Page |1



Khayal et al., Innovation: International Journal of Applied Research;
ISSN: 2347 9272 (Volume-4, Issue-1)
Il. MATHEMATICAL FORMULATIONS

A first — order shear deformation theory (FSDT) is selected to formulate the problem. Consider a thin
plate of length a, breadth b, and thickness h as shown in figure2.1(a), subjected to in — plane loads Rx, Ry and
Rxy as shown in figure2.1(b). The in — plane displacements u (x,y,z) and v (x,y,z) can be expressed in terms
of the out of plane displacement w (x, y) as shown below:

The displacements are:

u(x, Y Z) = U (X, Y) - Z(’;_‘:(/\I

ow $ 2.1
v y,2) = vo(xy) =27 @
w(x,y,z) = w,(X,y) J
Where u,, v, and w, are mid — plane displacements in the direction of the x, y and z axes respectively;
z is the perpendicular distance from mid — plane to the layer plane.
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Figure 2.2 Geometry of an n-Layered laminate

The plate shown in figure 2.1 (a) is constructed of an arbitrary number of orthotropic layers bonded
together as in figure 2.2 above. Refer to references [1] — [7].
The strains are:

_0u, 0*w 10w z )

“=%x  ‘ox +2(6x) '
av w1 ,/0w\° ¥

_0v  d'w 100w 2.2

% dy Zayz +2<6y) (2:2)
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The virtual strains:

se =2 AL \
€ 9x U, Z62W+aXa w i
S, =25 s+ 22 } 23
& ayV0 Zayzw 6y0yw | (2.3)
sy = Lsv+ Lou, — 202wt 2 L st Lol |
T ax OV dy to Z@X@y W 0x dy W 9k Way
The virtual strain energy:
8U=f deTodV (2.4)
\%
But,
c = Ce
Where,
C:Cu(l,]: 1,2,6)
. 83U = f 5¢T C dedV (2.5)
\'%

If we neglect the in plane displacements u, and v, and considering only the linear terms in the strain —
displacement equations, we write:

de=—z| = |[ow (2.6)

I1l. NUMERICAL MODELING

The finite element is used in this analysis as a numerical method to predict the buckling loads and
shape modes of buckling of laminated rectangular plates. In this method of analysis, four — noded type of
elements are chosen. These elements are the four — noded bilinear rectangular elements of a plate. Each element
has three degrees of freedom at each node. The degrees of freedom are the lateral displacement (w), and the
rotations (¢) and (y) about the (X) and (Y) axes respectively.

The secondary effects of shear deformation, are also considered in the present method. The shear
deformation is formulated by the first — order shear deformation theory (FSDT). The finite element method is
formulated by the energy method. The numerical method can be summarized in the following procedures:

The choice of the element and its shape functions.

Formulation of finite element model by the energy approach to develop both element stiffness and
differential matrices.

Employment of the principles of non — dimensionality to convert the element matrices to their non —
dimensionalized forms.

Assembly of both element stiffness and differential matrices to obtain the corresponding global
matrices.

Introduction of boundary conditions as required for the plate edges.

Suitable software can be used to solve the problem. (here FORTRAN program was used).

For an n noded element, and 3 degrees of freedom at each node.

Now express w in terms of the shape functions N ( give in Appendix (B) ) and noded displacements a®,
equation (2.6) can be written as:

de = —zBda® (3.1)

Where,

_|o*N; @2 Ny 9PN
" |ox2  ay? % ox dy

BT

and
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a®*=[w] i=1,n
The stress — strain relation is:
c=Ce
Where c are the material properties which could be written as follows:
Cll C12 C16
C= Icu Ca2 Czel
C16 C26 C66
Where Cj; are given in Appendix (A).

6U=f (Bda®)T(Cz?)Ba¢dV
v

Where V denotes volume.

85U = 8a°T f BTDBa®dx dy = 8a°TK®a® (3.2)
v

Where D;; = Y, fZZkk_l Ci,-Z2 dZ is the bending stiffness, and K¢ is the element stiffness matrix which
could be written as:

Ke =fBTDB dxdy (3.3)

The virtual work done by external forces can be expressed as follows: Refer to Fig. (3.4).
Denoting the nonlinear part of strain by &¢

SW = f f 3eTo'dv = f 5¢TN dxdy (3.4)
Where
NT = [N,N,Ny, | = [o40, ] dZ
0
I[a_8W 0 ]I d
ol 17 5]
’ X
Y l 0.0, JlayJ
dy WY
Ny
-~ Y Y
Nyy =
.
N, = = N,
v
* ny
v L v
Ny,
Figure 3.1 External forces acting on an element
Hence
T
[l o g
5W=ﬂ[a",‘vj I s ay [Ny ldxdy  (3.6)
aw g g N,
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This can be written as:

5 ] ow
Wi [Ny Ng1lax
ow=[[13 B e Wl e
l 6wJ Xy vy —
NOW w = Nia;3
[ONi]' [aNi]
er [[lox]| [N Noy|ox| "
SW = da laNiJ [ny N, ] laNlJ dx dy (3.8)
e} %
Substitute P, = —N,, P, = =N, By, = =Ny,
aNi]T [aNl]
we—sa (125 1B P70 | aea .
=% JJ leni| |p, P |6N|a x dy (3.9)
ayJ
Therefore, equation (3.15) could be written in the following form:
SW = —8a°TKPa® (3.10)
Where,
[ON;]" oN;
D _ | ox | | ox |
K leaN [ny y]laNll dx dy
lay

KP is the differential stiffness matrix known also as geometric stiffness matrix, initial stress matrix, and
initial load matrix.
The total energy:

U+ W =0 (3.11)
Since da° is an arbitrary displacement which is not zero, then
Kea® — KPa® =0 (3.12)

Now let us compute the elements of the stiffness and the differential matrices.

Ke = ff BTDB dx dy

T

[ 02N, [ 0°N; ]
I | P D Dl o
K¢ = jf ay? 312 gzz gzel ay? dx dy
, 92N, 16 Y26 66 , 92N,
| 0x dyl | 0x dy
The elements of the stiffness matrix can be expressed as follows:
92N; 0°N; 92N, 02N, 9°N; 0°N; 9°N; 0°N;
ff[ n5z 6x2 Dlzﬁﬁ‘FZDmmﬁ‘FDlzﬁﬁ
Dy TN o SN, o INO o TN O
22 gy2 gy?2 %6 9x dy dy? 16 9x2 ox dy %6 9y2 9xdy
02 62 i
+4Dgg ——— 6x6 o ay] dx dy (3.13)
The elements of the differential stiffness matrix can be expressed as follows;
ON; ON; ON; ON; 9N, ON; ON; ON;
ff [ % K <6y % +ga—y> +Py6_y6_y] dxdy (3.14)

The integrals in equations (3.13) and (3.14) are given in Appendix (C).
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The shape functions for a 4 — noded element is shown below in figure 3.2.
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Figure 3.2 A four noded element with local and global co — ordinates

The shape functions for the 4 — noded element expressed in global co — ordinates (x, y) are as follows:
W = N1W1 + N2¢1 + N3\|/1 + N4W2 + N5¢2 + N6\|/2
+N;w3 + Ngo, + Noy, + Njgwy + N3¢, + Nipy,

Where,
ow
¢=--, V= oy
The shape functions in local co — ordinates are as follows:
N; = aj; + ajpr + aj38 + 4% + ajsrs + aj65% + a7 + agr?s + ajors?
+aj108> + aj1r3s + ajpprs®
N; = aj; + aj;r + aj3s + ajer? + ajsrs + ajs” + aj7r’ + ajgris + ajors?
+aj0s® + ajy;r3s + ajpprs?
The values of the coefficients a;; are given in the table in Appendix (B).

aZN 62 1
Qi = ﬂ arZ or? *drds =16 [3‘4314 *+3ai7aj7 + 3 aiga)e + a'“a’“]

9%N; 62 1
ﬂ 3z —l drds =16 [316316 += 3 aj93j9 + 3aj10aj19 + 31123112]

62N 62
352 —drds = 16[al4a]6 + aj7aj9 + ajgajip + 31113112]

aZN 62
3z dr ds = 16[al(,a]4 + aj08j7 + ajjpajg + 31123111]

62N 62 N;
5 = drds = 8[al4a]5 + aj,a511 + 2a57858 + aj4a512

or? ords
2
+§ai4aj5]
9°N; 0°N; )
o = .ﬂ- aros gr2 Ards= 8[ 3isajs + 22jgaj7 + A1 3js + 7 2io g
+ajpaj]
O?N; 9N, ,
.U 2 Oros drds =8 [ai6aj5 + aj6aj11 + §aigaj8]
9*N; 0°N; 2
s = .U drds 0s? drds = 8[ ai53j6 + 3318319 + 3111316]

0°N; 0°N; 4
drds = 4 (aj5aj5 + aj53j11 + 7 ajgajg + Aj53j12
drdsor as 3
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4 9

+33i9dj9 + Aj11j12 + Aj123j11 T T inzdj

3

or or

oN; 6N] 1
= drds = [ ajpay; + §(3aizaj7 + 4aj,a;4 + 3ai73;;
+aj73j9 + Aj5aj5 + Aj5aj5 + Aj93j2 + 53511 T Aj7Aj9 T+

1
aj113j5) + 3 (ai5aj12 + aj93j9 + Aj123j5 + 9aj73j7 + 3aj11a511 + 1112

1
+aizaj11) + 712312

ON; aN 1
Qi = || === drds = 4 lajzas + §(aiBaj8 + aj53j5 + ajgaj3 + 3333510

Js 0s

4
+4aj6a56 + 3aj10aj3 + aj5a512 + ajgaj10 + 3 3i9dj9 + aj10aj3 + aj12aj5)

1
+§ (aisaj11 +ajgays + aj11a5 + 9a510aj10 + Q11512 + Aj128511 + 3a528j12)

1
+ 731113]'11]

oN; 6N] 1
di2 = drds = [aizaj3 + §(3ai2ajg + 2aj4a;5 + 3aj7a58

or or
+3aizaj10 + zaisa]'6 + aiga]‘:; + 231431'12 + 3ai7a]'10 +

+Zaillaj6)]

ON; ON; 1
q13 = - dr ds =4 [ai3aj2 + §(3313a]‘7 + Zaisaj4 + aigajz

ds or

1
+ai3a]-9 + 2a16a]-5 + 331103]'2 + Zaiﬁajn + §aigaj9 + §

1
+2aj12a),) + T (2aj63y12 + 3aj10aj9 + 337 + 23111314)]

3

3

5 3igdjg T Ajody7

Ajgdjo + 5

aj9ajg + 3aj10aj7

The values of the integrals are converted from local co — ordinates (r, s) to global co — ordinates as

92N, 0N, 4h, 4n3b
rl:ffaza dxdy = h3 ~mad &t

follows:

0°N, 0°N,
. Lt -
_H 92N; 0°N; 4
137 )) ax2 ay ~\hyh, )BT

ﬂ 92N; 0°N;
Fe = dy? 6x2 a

ﬂ 9%N; 0%N; v =
0x?% ox 6y Y=

1JAR Journal

_ﬂaZNaz,dd 4y
6™ J) oxay ox? Y= (h_)z()q(’__

ﬂaZN 0°N; dy = 4 B
dy? axay y= h2 47 =

4am?

nb?, qz
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ﬂ 9°N; 0°N; dy = 4 _ 4m?
ox 0y (')y y= hZ 48 = b2 s
ﬂ 9°N; 02N, dy = 4 _4mn
9x dy dx ay Y =\nh)P " P
ff ON; 0N, hy _ bn
ax 6X h, o = am o
_f ON; ON; dx dv = h, _am
i = ay dy xdy = hy qi1 = bn q11
ON; 6N]
I = f dxdy = qq,

ox dy

oN; ON]
ri3 = f y dxdy = qi3

In the previous equations h, = % and hy, = % where a and b are the lengths of the plate along the x —

and y — axis respectively. n and m are the number of elements in the x — and y — directions respectively.
The elements of the stiffness matrix and the differential matrix can be written as follows:
Kjj = Dy11rq + Dypry + 2Dger3 + Dy,13 + Dyyry + 2Dgerg + 2DqTs + 2Dger;
+4Dgerg
KP = Prig + Py (r1z +113) + Bryy
or in the non — dimensional form
4n3

b
Kij = F( ) D11q1 + 4mn (b) D12q4 + 4r1 D16q6 + 4mn (b) DlZ qd3

+4%(b) D3,q, + 4m? (E) D56qg + 4n°D}6qs + 4m? (%)2 D567
+4mn (b) Dg6 Qo

,n /b , ,m ,a
KB’ =k E(;) dio + Py (q12 + q13) + Py;(g) Qv

. 1 , a
0, = (gm)oir 7= (g

The transformed stiffness are as follows:
Cip = Cypc* 4 2¢252(Chy + 2Cgg) + Cpps?

where

C1p = c?s(Cyy + Cyy +4Cge) + Crp(c* +5%)
Ci = cs[Ciyc* + Cyp5% — (Cip + 2Cg6) (c* — s7)]
Cyp = Cyys* +2¢%s2(Cyy + 2Cgg) + Copct
Ca6 = cs[Cyy5? + Cyp¢? — (Cpp + 2Cge) (c? — 57)]
Cee = (Cyq + Cyy + 2Cq5)c?s? + Cye (c? — s2)?

Where
C By
1 =
1—vyvy
. v1Eq vi2Eq
V12V21 V12V21
c s
22 =
1—vvy
Cy4s = Gz, Css = GizandCee = Gy
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E; and E, are the elastic moduli in the direction of the fiber and the transverse directions respectively,

v is the Poisson's ratio. Gy, Gy3, and G,3 are the shear moduli in the x - y plane, y - z plane, and x - z plane
respectively, and the subscripts 1 and 2 refer to the direction of fiber and the transverse direction respectively.

IV. CONCLUSIONS
Finite element method (FEM) was used so as to predict the buckling loads and shape modes of
laminated rectangular plates. A suitable element type is chosen and its shape functions are determined. Energy
approach is used to formulate the finite element model and develop both element stiffness and differential
matrices. These matrices are assembled to give the corresponding global matrices, the required boundary
conditions are introduced and a suitable software (i.e. Fortran) is used to solve the problem.
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APPENDICES

Appendix (A)

The transformed material properties are:
C1, = C{1c05*0 + Cy,s5in*0 + 2(Cy, + 2C45)sin*Hcos?H
C1; = (C{1 + Cyy — 4Cyg)sin*6cos?6 + Ci,(cos*6 + sin*)
Cyy = Cy15in*0 + Cy,c05*0 + 2(Cy, + 2Ceq)sin?Ocos?0
Ci6 = (€11 — Ciy — 2C46)c0530sinf — (Cyy — Ciy — 2Cqq)sin36cosh
Ca6 = (€11 — Cip — 2C4g)c050sin®0 — (Cyy — C1p — 2Cqg)Sinbcos®
Co6 = (C11 + Cypp — 2C1, — 2C¢)sin?0c0s%0 + Cee(sin*O + cos*6)

E; , E, , v B

whereC;; = ,Cop , Cpo ,Cie = G2

1—vpvy 1—vvy 1—vipvy
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Appendix (B)

a;;/8

i i1 0,2 0,3 i,4 0,5 0,6 i,7 i,8 ,9 | i,10 | i,11 | i,12
N;
Ny 2 -3 3 0 -4 0 1 0 -1 1 1
N, 1 -1 -1 -1 0 1 -1 0 0 0
N3 -1 1 -1 0 1 1 0 0 -1 1 0 -1
N, 2 -3 -3 0 4 0 1 0 0 1 -1 -1
N; 1 -1 -1 -1 1 0 1 1 0 0 -1 0
Ng -1 -1 0 1 -1 0 0 1 1 0 -1
N, 3 3 0 4 0 -1 0 0 -1 -1 -1
Ng -1 -1 -1 1 -1 0 1 1 0 0 0
Ny -1 -1 -1 0 -1 1 0 0 1 1 0 1
Nio 2 3 -3 0 -4 0 -1 0 0 1 1
Niq -1 -1 1 1 1 0 -1 0 0 -1 0
Ny, 1 1 -1 0 -1 -1 0 0 -1 1 0 1

Appendix (C)
The integrals in equations (13) and (14) are given in nondimensional form as follows (limits of
integration r,s = —1 to1):

ff 9%N; 0%N; dy = 4h, ff N; 02N,
2 o XAy = or2 or?

4n3
—(16al4 a4+ 48a;7a; 7 + 16a,5a;5/3 + 16a;110;11)

92N, 02N, 4h, ([ 0*N; 0°N;
f——dxdy=Fﬂ- L drds
y

dy? dy? 9s? 9s?

4m3R3

(166116 ,6 + 16ai’9617"9/3 + 48ai’10a]"10 + 16ai‘1zaj"12)

fazNaz e d 4 ffazNaZN’dd
ax? ay? VT wn )] a7 ez T

= 4mnR(16a;,a4;6 + 164,709 + 16a;5a; 19 + 160,110, 12)

92N, 02N, 9%N; 0N,
ﬂ 9y? oz Gxdy = I by ff 352 gr2 drds

= 4mnR(16ai,6aj'4 + 16ai'gaj'7 + 16ai'10aj’8 + 16(11"12 aj,n)
J] OZN 62 _ 4 JfaZNiazNj i ds —
axayaxay dx dy = hhy )) drosoras T

4mnR [4ai’5a]"5 + 4(3ai‘5a]"11 + 4(11"807"8)/3

+4(Ba;5a12 + 4a;90;9)/3 + 4(a;11,12 + 126,11)+ 36ai,12aj,12/5]
ﬂaNaN _hyﬂ'aNaNd 4
ox ox XY= ] ooy drds

4a;20; 5 + 4(3a,20;7 + 404,40, 4 + 30,705 2)/3

mR [
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+4(a; 200 + a;50 5 + a;90;,)/3 +4(3a;50 11 + 30,7059 + 40,808
+3a,9a;7 + 30,116 5)/9 + 4(a; 50 12 + Q909 + A;120;5)/5

+364a;7a;7/5 + 120110511 /5 + 4(a;,11 412 + 3126;,11) /5 + 4,12 aj,12/7]
f NN, hxﬂ‘aN L
ay oy VT w)) es as T
mR
= [4a:30;5 + 4(a;30;8 + a;50;5 + a;80;3)/3
+4(3a;3a; 10 + 4a;60; 6 + 3a;100;3)/3 + 4(3a;5011 + Q808 + ;114 5)/5
+4(3a;5a; 12 + 3a;80; 10 + 4a;90; 9 + 30,104 g + 30,120 5)/9

+36a;100,10/5 + 4(Ai11 %G 12 + Ai12511)/5 + 120,120 12/5 + 40,11 05,11 /7]

J‘@N@Ndd_faNaNdd
ox ay Y ar as

=4a;,0 3 +4(0;20 8 + 20,405 +30;708)/3 + 43 a;20; 10 + 2a;50; 6
+a;90;3)/3 +4(2a,40;11 + 34,70, 8) /5 + 4(6a;40; 12 + 90,70, 19
+4a;5a;9 + a; 905 + 6a;110;6)/9 + 4(3a;94; 10 + 2a;1206) /5
ﬂ@N o dxdy = 'Ua_NO_N dr ds

dy O0x ds 0
=4a;3a, +4(3a;30;7 + 2a,50; 4 + a;80;5)/3 +4( ;30,0 + 20,60, 5
+3a;100;2)/3 + 4(6a;6a; 11 + Q800 + 40,908 + 90100 7 + 6020 4) /9

+4(2a,605,12 + 30;109,9)/5 + 432847 + 20;11G;,4)/5

ﬂaZNaN e dy = 4ﬂ62Naz ird
ax? oxay ' T n 2 )] arz oras 7
=4n?[8a;4(a;5 + a; 11 + a4 12) + 16(a; 705 + aiga; o/3)]
ﬂ 9%N; 0*N; e dy = 4 ﬂaZN 0%N, ' ard

0xdy axz = h %)) oros 6r2 ras
= 4n2[8ajy4(ai_5 +a;11 + amz) + 16ai‘8aj‘7 + 16ai,9aj_8/3]

ﬂ aZN ﬂ 9%N; 0N, i a
6y2 axay as2 aras ¢

= 4m2R2[8ai,6(aj,5 +aq1 + aj,lZ) +16a;10a; 9 + 16ai,9aj‘8/3]
ﬂ 9°N; aZN edy = 4 ﬂ 9%N; 0*N; ' drd
dxdy 0y? Y= h,* ) oros 052 ras

= 4m2R2[8aj‘6(ai,5 + al“11 + aillz) + 16a,-,9a]»,10 + 16ai,8aj‘9/3]

In the above expressions h, = % h, =% where a and b are the dimensions of the plate in the x —and y —
directions respectively. n and m are the number of elements in the x — and y — directions respectively. Note that

dx = %"dr and dy = %yds where r and s are the normalized coordinates, and R = a/b.
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