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Host Responses to Cryptosporidium Infection

Jody L. Gookin, Shila K. Nordone, and Robert A. Argenzio

Cryptosporidium is a clinically and economically important infection whose pathogenic effect begins with colonization of the
intestinal epithelium. Despite intensive efforts, a consistently effective therapy for the infection has yet to be identified. Morbidity
and mortality results from ongoing loss of absorptive epithelium, which leads to villous atrophy and malabsorption and release of
inflammatory mediators that stimulate electrolyte secretion and diarrhea. With further clarification of the mechanisms underlying
enterocyte malfunction i€ryptosporidium infection, it should be possible to design rational nutritional and pharmacologic therapies
to enhance nutrient and water absorption, promote the clearance of infected enterocytes, and restore normal villus architecture and
mucosal barrier function.
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he single-columnar epithelial lining of the small intes- | nfection of the Enterocyte by Cryptosporidium

tine is the 1st line of defense against translocation of
luminal bacteria, antigens, or endotoxin into the body while ~Cryptosporidium has a complex life cycle that is nor-
also being responsible for selective absorption of the mamally confined to the intestinal epithelium of the host (Fig
jority of nutrients, electrolytes, and water required for life. 1)- Biliary, pancreatic, and respiratory epithelial involve-
These absorptive and barrier functions may be particulary"€nt is also seen in some people with congenital (eg, X-
compromised by infectious enteropathies in which the epJinked hyper-lgM syndrome) or acquired (HIV) immuno-

ithelial cells are the primary target of injur@ryptosporid- ?heﬂ(.:l(?ncty ‘;gi 'thsome |mtr)1unodef|C|fnt mtouse m dOdetllf of
ium is a highly infectious, epitheliotrophic intestinal path- e Infection: €r ingestion, oocysts rupturé under the

ogen that is resistant to many disinfectants, is small andnfluence_ of pancreatic enzyme activities and bile salts and
e ) . — - . release infectivesporozoites into the lumen of the small
difficult to filter, and is ubiquitous in many animals and the .

. . in ine. Motil rozoi her rptive vill -
environment:2 It can be the cause of severe, life-threaten- testine. Motile sporozoites adhere to absorptive villus ep

ing diarrhea in HIV-infected | dis a lead ithelial cells, where they become enveloped by the apical
ing diarrnea in Hiv-intected people and 1S a leading Causeenterocyte plasma membranetesphozoites. Trophozoites
of persistent diarrhea and infant mortality worldwie.

roliferate asexually (merogony) to produce t onts,

Cryptosporidium is considered a major threat to the US \‘/)vhich contain 6—8¥1e$ozoitgs. Rygleaged meroig‘isgs infect
water supply, having been responsible in 1993 for the largyygitional enterocytes to form type | or type Il meronts, the
est waterborne outbreak of diarrhea in US histofJo-  |ater of which contain 4 merozoites. Merozoites released
mestic animals serve as an important reservoir for environfom type Il meronts infect additional enterocytes and pro-
mental contamination and human infection, and cryptosiiferate sexually (gametogeny) to form either a malero-
poridial diarrhea accounts for the majority of economic garmnt or a fema|ernacrogan‘ont' Microgametes released
losses suffered by the pork and dairy industfiésCur-  from the male microgamont fertilize the female macroga-
rently, there are no consistently effective treatments formete to form azygote. The zygote undergoes meiosis (spo-
Cryptosporidium sp. infection or a number of other infec- rogony) to form anoocyst containing 4 sporozoites. Two
tious enteropathies. With further clarification of the mech-types of oocysts are formed—thin-walled oocysts that can
anisms underlying enterocyte malfunctionGnyptosporid-  rupture in the intestinal lumen and immediately reinfect the
ium infection, therapeutic approaches designed to enhancepithelium (autoinfection) and thick-walled oocysts that are
nutrient and water absorption, parasite clearance, and epexcreted in the feces and are immediately infective when
thelial repair are likely to diminish the morbidity, mortality, ingested-34
and economic impact of this as well as other epithelial path- Surprisingly, little is known about the direct effect of
ogens. Cryptosporidium on the parasitized epithelial cell. Attach-
ment of sporozoites to the apical plasma membrane of the
enterocyte appears to be prerequisite to the pathophysio-
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antibodies recognizing glycoprotein antigens on the sporo-
zoite surface can inhibit parasite attachmérit. Recogni-

5 2001 tion of specific ligands on the apical enterocyte membrane
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Fig 1. Life cycle of intestinalCryptosporidium infection.

brush border and invagination of the enterocyte membranejatal pigs and calves, infection witBryptosporidium oc-
which engulfs and eventually surrounds the parasite to forntasionally results in gross epithelial disrupti8#?

a parasitophorous vacuole. Within this vacuole, the organ- Although epithelial damage is clearly a consequence of
ism is both intracellular and extracytoplasriié?’?> This  Cryptosporidium infection, what remains less certain are
unusual location may provide an important barrier to thethe precise mechanisms involved and the relative role of
access of antimicrobial agents to the orgam&mhe par-  the organism versus the host response in creating the injury.
asite remains separated from the enterocyte cytoplasm b@ryptosporidium may cause enterocyte injury by several
an attachment zone of extensively folded membrane repotential mechanisms, including a direct cytotoxic effect,
ferred to as the “feeder organelle.” Ultrastructurally, this induction of apoptosis of the host enterocyte, or by initi-
parasite-enterocyte interface exists as an electron-densging a change in phenotype of the enterocyte, which targets
band of cytoskeletal and intracellular signaling protéins. its elimination by innate or specific immune mechanisms.
27 Rearrangement of the actin cytoskeleton at this interface

appears to be required f@ryptosporidium infectivity.2¢ Direct Cytotoxicity
. . . . . Evidence for a direct cytopathic effect @fyptosporid-
Mechanisms of Epithelial Injury in ium is surprisingly limited and is based on studies of in-
Cryptosporidium Infection fected intestinal epithelial cell cultures. These studies have

Numerous observations suggest tayptosporidium is shown that infection of an epithelial monolayer results in
directly injurious to the intestinal epithelium. Foremost of €@kage of the cytosolic protein lactate dehydrogenase

these observations is the presence of severe villous atropH{:PH) into the culture mediur:2e2*Release of LDH cor-
in animals with active infection (Fig 2. Villous atrophy  'elates with the dose of oocysts and accumulates only with-
is the reduction in villous surface area that results fromin the media bathing the apical side of the infected mono-

ongoing loss of surface enterocytes. This ongoing loss i2Yer- Other studies have demonstrated selective accumu-
compensated for by hyperplasia of the crypt epithelium,'at'on of propidium iodide across the apical, but not the

which provides replacement enterocytes to the villus. Secbasolateral, membrane of infected epithelial cells. These

ondly, Cryptosporidium infection is associated with an in- findings suggest thaCryptosporidium disrupts the apical
crease in transepithelial permeabiliy229%In people with ~Membrane of the host enterocyte, an effect that may be
HIV-related cryptosporidiosis, in vivo intestinal lactulose /INked to function of the feeder organeffe.

and mannitol permeability are increasédsome studies .
have reported a decrease in in vitro mucosal permeability Apoptosis

after Cryptosporidium infection 3232 Importantly, these stud- In contrast to cytotoxic effects, studies Gfyptosporid-

ies do not account for the diminished surface area of inium-infected biliary*3* and intestinal epithelial cell cul-
fected mucosa, which is a consequence of the severe villousires® suggest an important role for apoptosis in mediating
atrophy. When in vitro measurements of permeability areepithelial injury. Apoptosis is a form of cell death in which
calculated with respect to the actual mucosal surface arethe cell activates its own internal death program. There is
present, increased epithelial permeability is disclosed dose- and time-dependent increase in number of apoptotic
(Gookin and Argenzio, personal communication). In neo-cells within the infected monolayer. In biliary epithelia, in-
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Fig 2. Normal andCryptosporidium parvum-infected mucosa from neonatal pig and calf ileu#d) Normal neonatal piglet ileal mucosa is
greatly amplified by tall villous projections. In neonates, these villi are lined by foamy enterocytes that are specialized for pinocytosis. Magni-
fication 16x. (B) lleal mucosa from a neonatal piglet experimentally infected Witiaptosporidium parvum. Epithelial infection has resulted in

loss of surface enterocytes and severe villous atrophy. Magnificatizn ) Normal neonatal calf ileal mucosa. Villous projections appear to

lack foamy enterocytes (an observation of undetermined significance). Magnificatian(flleal mucosa from a neonatal calf experimentally
infected with Cryptosporidium parvum. There is villous atrophy and epithelial disruption. Hyperplasia of crypt epithelium provides replacement
enterocytes to the villus. Note the relatively mild degree of inflammatory cell infiltration of both the piglet and calf lamina propria. Magnification
13.2X. Hematoxylin and eosin stain. Bar 200 p.m.

fection results in the synthesis and release of Fas liganttypothesis is a study of porcine ile@Fyptosporidium in-

into the culture medium while at the same time stimulatingfection in which 15% of infected enterocytes exfoliated
surface expression of its transmembrane receptor proteiftom the side of the villus, whereas 85% were extruded at
Fas3* Activation of Fas by Fas ligand results in activation the villus tip32

of the death program. These studies also demonstrated that

Fas ligand mediates apoptosis of uninfected enterocytes as Mucosal | nflammation

well, thus contributing to a nonselective epithelial injury.

Although apoptosis can lead to death of the infected enter- Cryptosporidium infection of epithelial cell cultures and
ocyte, there is evidence th@ryptosporidium subverts this  xenografts of human intestinal mucosa result in the polar-
host attempt to eradicate infection. For example, after inized secretion of neutrophil chemokines and activation fac-
fection of intestinal epithelial monolayers, apoptosis is re-tors (IL-8, GRQx, IL-1B, and TNFx) from the basolateral
stricted to cells containing the parasite, but the majoritysurface of host enterocyt&s*¢ Cytokine release is in direct
(80%) of infected cells present are not apoptétiBrotec-  proportion to the number of infecting organistAgxperi-
tion from apoptosis appears to result from parasite activamental Cryptosporidium infection of neonatal pigs results
tion of the transcription factor NkB.2®> The extent to in a significant influx of neutrophils and macrophages and

which apoptosis contributes to enterocyte losse€riyp- increased concentrations of malondialdehyde (a product of
tosporidium infection and the specificity of this mechanism lipid peroxidation837:38This occurs within the lamina pro-
in vivo await the results of further study. pria at the peak of infection and correlates directly with the

An alternate hypothesis to targeted apoptosis of infectechumber of parasitized enterocytes and degree of villous at-
cells is the possibility that enterocyte losses result from arrophy?® There is no change in the total number of cells
acceleration of the normal program of epithelial turnover,within the lamina propria surrounding the crypts, suggest-
in which enterocytes produced in the crypt are eventuallying that a greater concentration of inflammatory cell me-
terminated by apoptosis at the villus tip. Such a hypothesigliators is brought to bear on infected villus rather than crypt
would be consistent with the commonly observed lack ofenterocytegé Despite these observations, inflammatory cell
disruption of infected epithelia in vivo. In support of this infiltrates are often mild irCryptosporidium infection, sug-
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Fig 3. Consequences of villous atrophy @ryptosporidium infection. (A) Net movement of water across the small intestinal mucosa is deter-

mined by the balance between villous absorption and crypt secretion. Absorptive transport mechanisms are expressed by mature villus enterocytes
and include nutrient-coupled Naransporters and neutral NaCl transportéB). In Cryptosporidium infection, loss of villus enterocytes results

in severe villous atrophy with nutrient and electrolyte malabsorption and shifts water balance in favor of net secretion.

gesting that they are unlikely to be a primary cause of theboth to direct effects of PGEn the epithelium and indirect

epithelial cell losses. effects via PGJ activation of the enteric nervous systém.
The source of high PGs in infected tissue has not been
Mechanisms of Diarrhea in Cryptosporidium definitively established but may be the result of infiltrating
Infection PMNs and macrophagé%3’+143whose products have been

. - . . shown to strongly induce PG synthesis from mesenchymal
The pathophysiology oCryptosporidiunrassociated di cells in the lamina propri&. Conversely, in human intes-

arrhea is complex. Diarrhea appears to be primarily a con:; L i . .
- . S0 tinal epithelial cell culturesCryptosporidium directly acti-

sequence of (1) severe villous atrophy, which diminishes . .
) . vates PGH synthase 2 expression and P&mthesis by
absorption, and (2) altered electrolyte transport, which re- s . -
; ; . _infected cells'® The relative contribution of these mecha-

sults from the release of inflammatory mediators. Secretion

of an enterotoxin byCryptosporidium is suggested by some nisms to net PG production in vivo and the signaling path-
. Typtospc 99 el ways leading to altered electrolyte transport need to be re-
studie8®; however, this remains controversial. Fluid absorp- ’ : S
' ; o . solved, as this may have important therapeutic implications.
tion by the small intestine is the net result of nutrient-cou- Surprisingly, infected piglet ileum treated with the PG
ple_d N& and NaCI-absor_ptlve processes on the V|I_Ius andsynthesis inhibitor indomethacin displays normal or even
anion secretory mechanisms in the crypts. The villus ab'augmented rates of NaCl absorption despite loss of two-
sorptive processes are thought to be gxpressed .only by ﬂ1ﬁirds of the villous surface areéa.ln the normal piglet
most mqture enterocytes at t.he. vH[us t'p.' Accordlngly, IoartiIeum the villous epithelium is highly vacuolated as a con-
of the fIU|d_ losses |rCryptospor|d|ur_n infection are believed sequénce of ongoing pinocytosis (Fig'@)t is possible that
to be a direct consequence of villous atrophy and the as;

sociated electrolyte and nutrient malabsorption (Fig 3). Forthese specialized cells do not normally contribute to NaCl

example, impaired glucose- and glutamine-coupled Atz absorption or that the NaCl transporter has been markedly

. ; PO up-regulated in the remaining epithelium. The latter is a
sorption has been |dent|f|ed.|n piglet and rat models qf thed!itingt possibility becauseggltﬁ)cocorticoids have been
infection?83340-42|n people with HIV-related cryptosporid- '

iosis, vitamin B, and b-xylose absorption are diminished shown to induce NaCl transporter mRNA transcription par-

2 ; . S alleled by increased activity of this transporter in rat ileum

and correlate with the location of mucosal infection (ileum . ! .
i ) . : and proximal colort? Although nonselective PG synthesis
and proximal small intestine, respectively) and extent of.

. . . inhibitors are capable of restoring normal NaCl absorption,
villous atrophy2* It is probable that increased mucosal per-_, .~ ~ " . ; S :
" . : . their in vivo use in piglets with cryptosporidiosis results in
meability also contributes to ineffective electrolyte and nu-. . . X
. B S . ; increased synthesis of TNFby the intestinal mucosa and
trient absorption inCryptosporidium infection, although

studies have not been performed to substantiate this. more severe villous damag‘éSur.pnsmeg, little evidence .
exists either in support of or against the use of PG synthesis

inhibitors in any experimental or natural infection of the
intestinal epithelium. Selective PG inhibitors or inhibitors

Nevertheless, an equally important loss of fluid in cryp- of upstream or downstream mediators of excessive PG syn-
tosporidial infection has been shown to involve a PG-me-thesis may ultimately be most beneficial. For example, in-
diated alteration in electrolyte transport (Fig 4). Concentra-hibitors of enteric cholinergic or vasoactive intestinal poly-
tions of the endogenous PGs, PGad PGJ, are higherin  peptide-secreting (VIPergic) nerves, downstream effectors
infected tissue and inhibit NaCl absorption and induce an-of PGI, production in the pig, attenuate the altered NacCl
ion (CI- or HCO; ) secretiorit These alterations are due transport of the infection by some 50%.

Role of Endogenous Prostaglandin (PG) Synthesis
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Fig 4. Role of endogenous prostaglandin (PG) synthesi€riyptosporidium infection. Both PGJ and PGE are increased in infected mucosa
and result in altered electrolyte transport. PGlreleased from cells in the lamina propria in response to mucosal inflammation and stimulates
cholinergic and vasoactive intestinal polypeptide-secreting (VIPergic) enteric nerves that lie in close proximity to the epithelium. Acetylchol
(Ach) and VIP alter electrolyte transport by increasing enterocyte cCAMP and @ad messengers, respectfully. This results in stimulation of
ClI- secretion by crypt enterocytes and inhibits NaCl absorption by villus enterocytes. i®&¥thesized by both the lamina propria and the
infected epithelium. PGHlirectly stimulates Cl secretion by crypt enterocytes and inhibits NaCl absorption by villus enterocytes by increasing
enterocyte cCAMP. ROM, reactive oxygen metabolites; &Nfumor necrosis factor alpha.

Mechanisms of Recovery from Cryptosporidium that o T-cell receptor (TcR) lymphocytes are necessary
Infection for host control of cryptosporidiosis, wheregs TcR* cells
are not” The TcR is the extracellular molecule expressed
on T cells that recognizes antigen associated with major
ridiuminfection. For example, infection in neonates is morehlstocompat|b_|l|ty proteins (MHC) of antigen-presenting
SF”S' Most circulating CD4 T cells expressaf TCR,

common and severe than in adults, presumably because . ; o

. L S Whereas theyd TcR is usually expressed on intra-epithelial

incompletely developed adaptive immunity in neonates. Re- . : L
. . L CD8 T cells of the gastrointestinal tract. The relative im-

crudescence of occult infection can be seen during immu-

nosuppressive therapy, and the prevalence of infection igortance of CD4 versus CD8 T-cell populations to clear-

greater in people and animals with congenital and acquirec‘ril nce (_)fCryptosporldlu_m parvurm |nfect|_or_1_has b_een further
immunodeficiency?->* The critical mediators involved in nvestigated with major histocompatibility antigen (MHC)

S . class | and Il deficient mice. MHC ll-deficient mice lack
recovery fromCryptosporidium infection appear to be T .

. . functional CD4 T cells and develop severe and protracted
lymphocytes, the cytokine IFN and intercellular com-

S ; .Infection after ingestion ofC parvum oocysts, whereas
munication, which depends on a transmembrane protein - . . .
CD40 and its cognate ligand CD154. MHC I-deficient mice, which lack fynctlonal CDSr cells,
do not®® In reconstituted SCID mice that have recovered

from infection, donor lymphocytes have been demonstrated
to migrate to the recipient’s intestinal epithelitf? and

Immunodeficient mouse models have provided considtelease IFN in the presence of soluble oocyst antigén.
erable insight into the role of lymphocytes in protection andThese combined observations indicate a critical role for the
recovery fromCryptosporidium infection. T cells appearto CD4* T cell in recovery fromCryptosporidium infection.
be essential for this purpose. Severe combined immuno- Although the role of CD8 T cells in protection and
deficient (SCID) mice (lacking both T and B cells) and clearance of infection in immunodeficient mouse models is
nude mice (lacking only T cells) develop chronic crypto- weak, acuteC parvum infection of neonatal calves is as-
sporidiosis after experimental infection, whereas mice lack-sociated with dramatic increases in the number of intra-
ing only B cells recover normallff-515455Adoptive transfer  epithelial CD8 T cells isolated from diseased ileal muco-
of CD4* lymphocytes (helper T cells) to SCID mice is sa®® Species differences in the percentage of T-cell pop-
markedly more effective at mediating clearance of infectionulations within the gastrointestinal tract may ultimately be
than reconstitution with CD8 lymphocytes (cytotoxic T  found to contribute to species-specific mechanisms of clear-
cells)s® Further supporting these studies is the observatiorance of C parvum. Lymphoid cells of the gut-associated

Adaptive immunity plays a pivotal role in determining
the susceptibility to and ability to recover fro@ryptospo-

T-Lymphocyte Response to I nfection
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Fig 5. Immune responses t@ryptosporidium infection. T-helper lymphocytes (CD% fall into 2 functionally distinct types based on the
cytokines they secrete. Both types express T-cell receptors (TCR) that recognize antigen in the context of major histocompatibility complex Il
(MHCII) molecules. Thl-type cells secrete cytokines that activate cell-mediated immune responses. The cytokine interferon gamjima (IFN
activates macrophages (Md), and interleukin-2 (IL-2) results in proliferation of cytotoxic T cells*)CDBe specific antigen recognized by

early Thl-type cells irCryptosporidium infection is unclear, as is their role in elimination of infected enterocytes. Thl-type cells may directly
interact with infected enterocytes or stimulate macrophage or cytotoxic T-cell*(QB8ponses. Th2-type cells secrete cytokines that activate B
lymphocytes and antibody (eg, 1gA) synthesis. Neutralizing antibody promotes clearance and imm@nitgtosporidium infection.

lymphoid tissue are normally found in 3 compartments: (1)mote cell-mediated immune responses by phagocytes and
the connective tissue of the lamina propria, (2) Peyer'scytotoxic T cells (CD8) (Fig 5). These IFN-secreting
patches, and (3) within the epithelium. Once within the ep-CD4* T cells increase early (day 9) in murir@yptospo-
ithelium, the intra-epithelial lymphocytes (IELs) are ridium infection® Cytokine depletion experiments and
uniquely poised to execute immune system defense againstudies in mice genetically deficient in selected cytokines
mucosal pathogeri8.Several studies have demonstrated anhave shown that Th1 cells are critical for activation of pro-
increase in numbers of IELs aft@ryptosporidium infec- tection and clearancé:s8 Depletion of IFNy or IL-12 by
tions*%9-62as well as an apparent physical association bemeans of monoclonal antibodies increases the severity and
tween the |IELs and infected enterocyt@%.Approximately  duration of infectior?67.68 A single dose of recombinant
25% of peripheral blood lymphocytes and IELs of calves|_-12, given before experimental infection wit parvum,
areyd TcR* (see Waters et @ and therefore may play a has been shown to prevent infection of both immunocom-
larger role in control of cryptosporidiosis in cattle than they petent and SCID mic# However, exogenous IL-12 is not
do in mice. Collectively, these findings suggest the possieffective when given after the onset of infection. The action
bility of dramatic species differences in the type of immunef ||.-12 in preventing infection is believed to be through

response tcCryptosporidium infection. the induction of IFN, in that co-administration of anti-
. IFN+y and recombinant IL-12 negated the protective effect
Role of the CD4* Th1-Type Cell of recombinant IL-128 In separate murine studies, neu-

Further investigation of the role of the CD4 cell in tralization of IFNy with anti-IFNy monoclonal antibodies
recovery of mice infected witlCryptosporidium has re- enhanced oocyst sheddignd extended the period of oo-
vealed a biphasic response involving 2 functionally distinctcyst excretiort? although infection remained self-limiting.
CD4+ T-cell subtype$#-%° These subtypes are identified by It was only upon neutralization of both IRNand CD4 T
virtue of the complement of cytokines they secrete. Thil-cells that shedding was dramatically increased, and infec-
type cells elaborate cytokines (eg, Hrldnd IL-2) that pro-  tion became chroni®. These observations suggest that both
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CD4+ T cells and IFN are required to prevent initiation ium-infected SCID micé? Also, children with a genetic
of infection, with IFNy playing a major role in limiting the  deficiency in expression of CD154 (X-linked hyperimmu-
severity of infection and CD4T cells influencing the du- noglobulin M syndrome) are predisposed to chro@igp-
ration of infection. tosporidium infection® Whereas the CD4T cell is the like-
The precise effector mechanism of the CDBcell re- ly source of CD154 inCryptosporidium infection, the
sponse is not known. When cultured ex vivo, these early-CD40-bearing cell type engaged by CD154 remains uncer-
responding cells do not appear to specifically recognizegain. CD40 can be expressed in vitro Byyptosporidiunm-
Cryptosporidium antigen® In addition, when CD4 T cells  infected bile duct epithelial cells and cultured hepatociies,
bearing a single specificity of T-cell receptor that recognizesand CD154 can mediate apoptosis of infected hepatocytes
only chicken ovalbumin are transferred into SCID mice, bearing CD40! These observations suggest that CD4
they migrate to the intestinal mucosa, become activatedgells may interact directly with infected enterocytes via
and eliminate Cryptosporidium-infected enterocyte®.  CD154-CD40 interaction (Fig 5). Potential consequences of
When these ovalbumin-specific CDZ cells are re-isolat- this interaction include increased cellular NO synthe-
ed from the mice after infection, they do not proliferate in sis’*¢7induced expression of Fas and Fas ligand, which
response tdC parvum antigen exposur€. The role of the initiate apoptosis, or direct activation of pro-apoptic intra-
TcR in these responses is unknown, and it remains uncleasellular signaling pathways (ie, caspases 8 and 3), which
how these lymphocytes recognize and promote clearance @liminate the infected enterocyte. Mice with Fas or Fas li-
infected enterocytes either through direct interaction withgand deficiency are capable of recovering from infection,
infected enterocytes or via activation of macrophages osuggesting these molecules do not singularly affect clear-
cytotoxic CD8 T cells (Fig 5). The hypothesis that early- ancé® (Perryman and Nordone, personal communication).
responding CD4 T cells might combat infection in a non-
antigen-restricted manner is an unconventional one. Role of NO

Role of IFNvy In mice experimentally infected witkCryptosporidium,
inducible NO synthase enzyme (iNOS) is expressed by the
infected epithelium, and plasma NO concentration is in-
creased? Several observations suggest that these increases
in NO synthesis play a role in recovery from infection.
Firstly, INOS knockout mice and mice treated with INOS
inhibitors have increased susceptibility @oyptosporidium
infection, increased oocyst shedding, increases in epithelial

IFNy knockout mice or mice treated with anti-IfNanti- L ) o

. : L - colonization, and delayed parasite clearafi¢eLikewise,
body are highly susceptible t&ryptosporidium infec- . . . L
. : . treatment of infected mice with-arginine or an NO donor
tion't"+72and have increased numbers of infected entero-

cytes and oocyst sheddift® Conversely, treatment with decreases epithelial infection and oocyst sheddifigl-

recombinant IFN diminishes the parasite load of infected ;22332 clto I;tnbg;rr;gutr?nﬁg{m?r?;to ngt irs},/patltr)lsr()eosrslglrl:t?;lu};lctor
intestinal epithelium! Exactly where and how IF{ me- ’ pp y

. . . for recovery. For example, iINOS knockout mice and mice
diates a decrease in number of infected enterocytes an o AN .
P treated with iNOS inhibitors are capable of recovering nor-
oocyst shedding is unknown. R X
. N N . mally from Cryptosporidium infection8°.8
IFNYy has direct effects on epithelia, including induction . . . .
. . . The cellular source of NO and its precise role in medi-
of MHC | and MHC Il receptors, expression Bf integrin- . g . .
o . ating clearance o€ryptosporidium organisms and infected
dependent epithelial ligand,and up-regulation of trans- . S
. " . enterocytes is not known. NO inhibits the growth and func-
membrane CD40 expressiéhand triggers the opening of

: - . . . . tion of numerous microbial pathogettsin vitro, NO do-
intercellular tight junctiong8? These alterations may equip A .

: : . . nors have been shown to inhibit excystationGo§/ptospo-
the enterocyte for interaction with cytotoxic effector cells

of the specific and innate arms of the immune responser.Idlum sporozoites and to reduce sporozoite viabifityhis

IFN~y also inhibits the ability of attache@ryptosporidium mechamsm !|kely involves th? Inactivation by.N.O of crit-
. . o ) . ical metabolic pathways mediated by?Feontaining me-
organisms to invade epithelial cells in culttrrand induces

e . . talloenzymes of the organisthFurther, the infected enter-

nitric oxide (NO) synthesi&: .
ocytes themselves may be an important source of NO, and

IFN+vy has been shown to stimulate high-output NO forma-
tion by cultured epithelial cell®. IFNvy is unlikely to me-

The ligand CD154 is expressed predominantly by acti-diate its effects entirely by stimulating NO synthesis, how-
vated CD4 (T helper) lymphocyted. The receptor for ever, because IFINknockout mice have more severe dis-
CD154 is called “CD40” and is an integral membrane pro- ease than iINOS knockoutsThe ability of enterocytes to
tein that can be expressed by numerous cell types, includingroduce high NO concentrations may play an important
B lymphocytes, epithelial cells, and macrophages. Engagerole in mucosal defense against epithelial pathogens, either
ment of CD154 and CD40 can result in a myriad of re- by injuring the parasite or by eliminating the infected en-
sponses from stimulatory to induced cell death. Such interterocyte3®* The unapposed generation of NO induces apop-
actions appear to be required for eliminationGf/ptospo- tosis, and, in the presence of superoxide, NO is converted
ridium infection® For example, T cells deficient in CD154 to an extremely potent oxidant peroxynitrité> Peroxyni-
fail to confer immunity when transferred ©ryptosporid- trite may mediate the anti-cryptosporidial effects of NO as

Cryptosporidium infection is associated with increased
synthesis of IFN both in vitro and in vivoit®8 Potential
sources of IFN include the CD4 T cells themselves, as
well as CD8 T cells and natural killer cells. Several ob-
servations suggest that IkNs a major effector cytokine
of the immune response agai@typtosporidium infection.

Role of CD154 Expression
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treatment ofCryptosporidium-infected mice with antioxi- Conclusion
dants (ascorbic acid or superoxide dismutase) worsens 00- o o ) )
cyst shedding and enterocyte infectién. Cryptosporidium is a clinically and economically impor-

tant infection whose pathogenic effect begins with coloni-
. i zation of the intestinal epithelium. Despite intensive efforts,
Role of the CD4* Th2-Type Cell a consistently effective therapy for the infection has yet to

The resolution phase of murir@ryptosporidium infec- be identified. M_orbidit_y an_d morta!ity results from ongoing
tion (day 23) is accompanied by sustained increases in ||_J.OSS of absorp“Ve eplthellum, which |ea.ds to villous atrO'-
4-secreting (Th2-type) CD4T cells within the gastroin- phy and ma_labsorptlon and release pf mflammatory mec_;ll-
testinal mucos& These lymphocytes show specific re- ators that s.tllmul_ate electrolyte secretion and d|§1rrhea. With
sponses toCryptosporidium antigen when cultured ex further clar|f|qat|qn of the mgghan!sms yndgrlylng entero-
vivo.®* Th2-type cells elaborate cytokines (eg, IL-4 and Cyte malfunctlon |rCryptospor|d|um|nfect|on, it should be .
TGFp) that promote B cell activation and immunoglobulin p033|b_le to design ranon_al nutritional and pha_rmacologlc
synthesis (Fig 5). B-cell-deficient mice and mice treatedtherapies to enhar_lce nutrient and water absorption, promote
with anti—IL-4 antibody demonstrate delayed but eventuaithe clearance of infected enterocytes, and restore normal
resolution of infectiorf>e® That antibody synthesis is not villus architecture and mucosal barrier function.
required for recovery is typified by the normal serum and
secretory antibody responses in people with HIV and Acknowledgments
chronic Cryptosporidium infection. Nevertheless, produc-
tion of neutralizing antibody likely hastens recovery from
infection by inhibiting the cycle of reinfection by intralu-
minal stages of the organism and plays an important rol
in protection from reinfection.
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